Successfully Attacking Masked AES Hardware Implementations

Stefan Mangard, Norbert Pramstaller, and Elisabeth Oswald

Presentation Outline

- Masking schemes for AES
- Implementation of masking schemes on a chip
- Results of attacks on the chip
- Conclusions and future work

Masking Schemes for AES

- Multiplicative schemes having the "zero" problem

- CHES 2001: Akkar, Giraud

- CHES 2002: Trichina, De Seta, Germani
- Provably secure schemes:
- SAC 2004: Blömer, Gerado, Krummel
- FSE 2005: Oswald, Mangard, Pramstaller, Rijmen
- Other schemes:
- CHES 2002: Golić, Tymen
- AES 2004: Trichina, Korkishko

Block Diagram of the Chip

Measurement Setup

Attacking Registers in the Final Round

Output of Round 9

\rightarrow Ciphertext

Implementation	Needed Measurements
Unmasked	120,000
Oswald et al.	$1,000,000$
Akkar et al.	$1,000,000$

Attacking the Output of SubBytes

Attacks on an Unmasked S-Box

Attacks on an Unmasked S-Box

Attacks based on predicting the Hamming weight and individual bits have been performed

Results of Attacks on the Unmasked S-Box Implementations

The correct key was not revealed (1 Mio Measurements)!

The Switching Activity of the Unmasked ІІІ S-Box

The Switching Activity of the Unmasked laik S-Box

Average toggle count for the 256 possible outputs (65536 simulations)

Results of Attacks Using the Simulated Power Model

	Flip Flops	Sbox (simple power model)	Sbox (characterization)
Unmasked	120,000	220,000	25,000

Using the simulation result as power model, an attack was possible

Results of Attacks with Simple Power Models

Implementation	Flip Flops	Sbox (simple power model)
Unmasked	120,000	220,000
Oswald et al.	$1,000,000$	250,000
Akkar et al.	$1,000,000$	900,000

The Switching Activity of the Masked Sbox (Oswald et al.)

Simulation based on the back-annotated netlist

Functional simulation based on the netlist (timing information is ignored)

Summary of all Attack Results

Implementation	Flip Flops	Sbox (simple power model)	Sbox (characterization)
Unmasked	120,000	220,000	25,000
Oswald et al.	$1,000,000$	250,000	30,000
Akkar et al.	$1,000,000$	900,000	130,000

Conclusions and Future Work

- No significant difference in attacking masked and unmasked S-Box implementations, if implemented in static CMOS
- We are currently analyzing, if there are "general power models"
- Masking schemes need to consider glitches

The Side-Channel Analysis Lab

http://www.iaik.at/research/sca-lab

Stefan Mangard, Norbert Pramstaller, and Elisabeth Oswald

Chip Design and Production in Cooperation With Frank K. Gürkaynak (ETH Zürich) and Simon Häne (ETH Zürich)

