Successfully Attacking Masked AES Hardware Implementations

ΓUG

Stefan Mangard, Norbert Pramstaller, and Elisabeth Oswald

Presentation Outline

- Masking schemes for AES
- Implementation of masking schemes on a chip
- Results of attacks on the chip
- Conclusions and future work

Masking Schemes for AES

- Multiplicative schemes having the "zero" problem
 - CHES 2001: Akkar, Giraud
 - CHES 2002: Trichina, De Seta, Germani
- Provably secure schemes:
 - SAC 2004: Blömer, Gerado, Krummel
 - FSE 2005: Oswald, Mangard, Pramstaller, Rijmen
- Other schemes:
 - CHES 2002: Golić, Tymen
 - AES 2004: Trichina, Korkishko

Block Diagram of the Chip

VLSI

Measurement Setup

VLSI

Implementation	Needed Measurements
Unmasked	120,000
Oswald et al.	1,000,000
Akkar et al.	1,000,000

Attacking the Output of SubBytes

The output of the SubBytes transformation is not stored in registers!

Attacks on an Unmasked S-Box

Attacks based on predicting the Hamming weight and individual bits have been performed

Results of Attacks on the Unmasked S-Box Implementations

The correct key was not revealed (1 Mio Measurements)!

The Switching Activity of the Unmasked

TUG

The Switching Activity of the Unmasked

JG

Average toggle count for the 256 possible outputs (65536 simulations)

Results of Attacks Using the Simulated Power Model

IAIK

	Elin Elono	Sbox	Sbox
		(simple power model)	(characterization)
Unmasked	120,000	220,000	25,000

Using the simulation result as power model, an attack was possible

Results of Attacks with Simple Power Models

Implementation	Elin Elono	Sbox	
Implementation	riip riops	(simple power model)	
Unmasked	120,000	220,000	
Oswald et al.	1,000,000	250,000	
Akkar et al.	1,000,000	900,000	

The Switching Activity of the Masked Sbox (Oswald et al.)

Simulation based on the back-annotated netlist

VLSI

Functional simulation based on the netlist (timing information is ignored)

IAIK

Side-Channel Analysis Lab

Successfully Attacking Masked AES Hardware Implementations 15/18

Summary of all Attack Results

Implementation	Flip Flops	Sbox	Sbox
		(simple power model)	(characterization)
Unmasked	120,000	220,000	25,000
Oswald et al.	1,000,000	250,000	30,000
Akkar et al.	1,000,000	900,000	130,000

Conclusions and Future Work

 No significant difference in attacking masked and unmasked S-Box implementations, if implemented in static CMOS

- We are currently analyzing, if there are "general power models"
- Masking schemes need to consider glitches

The Side-Channel Analysis Lab

http://www.iaik.at/research/sca-lab

Stefan Mangard, Norbert Pramstaller, and Elisabeth Oswald

Chip Design and Production in Cooperation With Frank K. Gürkaynak (ETH Zürich) and Simon Häne (ETH Zürich)