Bipartite Modular Multiplication

Marcelo E. Kaihara and
Naofumi Takagi

Department of Information Engineering
Nagoya University

Outline

- Background and Objective
- Preliminaries
- Ordinary Modular Multiplication
- Montgomery Multiplication
- New Method
- Hardware Implementation
- Summary

Background and Objective

* Modular Multiplication
- Basic operation in public-key cryptographic applications.
- Fast method required
- Operation with large integers (huge amount of computation)
- A fast method enables: The use of large keys and real time decryption.

Develop fast method for calculating modular multijplication

Main Idea

Multiplier is split into two parts

Ordinary Multiplication

Interleaved
Modular
Multiplication
Algorithm
(classical method)

Montgomery
Multiplication
Montgomery
Multiplication
Algorithm
proposed by
P.L.Montgomery, 1985

Ordinary Modular Multiplication

Definition:
M : modulus $\quad X, Y \in Z_{M}=\{0,1, \cdots, M-1\}$

$$
X \times Y \triangleq X \cdot Y \bmod M
$$

Multiprecision arithmetic:

$$
r=2^{k}, \quad M=\sum_{i=0}^{n-1} m_{i} \cdot r^{i}, \quad X=\sum_{i=0}^{n-1} x_{i} \cdot r^{i}, Y=\sum_{i=0}^{n-1} y_{i} \cdot r^{i}
$$

Ordinary Modular Multiplication

Interleaved Modular Multiplication Process of Computation

Montgomery Multiplication M-Residue System

Original Residue System

M - Residue System

Chained multiplications (in modular exponentiation) are performed in the M-Residue system

Montgomery Multiplication

Definition:

$$
\begin{aligned}
& M: n-\operatorname{word}, \operatorname{gcd}(r, M)=1, R_{M}=r^{n}>M \\
& X, Y \in Z_{M}=\{0,1, \cdots, M-1\}
\end{aligned}
$$

$$
X * Y \triangleq X \cdot Y \cdot r^{-n} \bmod M
$$

Montgomery Multiplication

 Digit-serial Montgomery Algorithm Process of Computation
Algorithm

A :=X;B := Y; M:= M;
T:=0;
for $\mathrm{i}:=0$ to $\mathrm{n}-1$ do
$\mathrm{T}:=\mathrm{T}+\mathrm{b}_{0} \cdot \mathrm{~A} ;$
$\mathrm{q}_{\mathrm{M}}:=\left(-\mathrm{t}_{0} \cdot \mathrm{~m}_{0}^{-1}\right) \operatorname{modr}$;
$T:=\left(T+q_{M} \cdot M\right) / r ;$
B := B / r;
endfor
if $\mathrm{T} \geq \mathrm{M}$ then $\mathrm{Z}:=\mathrm{T}-\mathrm{M}$;

New Modular Multiplication

Operands are transformed into a new residue system

Multiplier is split into two parts

Ordinary
Multiplication
Interleaved
Modular
Multiplication
Algorithm
(classical method)

Process
in parallel
to
boost speed

Montgomery
Multiplication
Montgomery
Multiplication
Algorithm
proposed by
P.L.Montgomery, 1985

New Modular Multiplication

A lot of research to speed up both algorithms

Ordinary
 Multiplication

Interleaved
Modular
Multiplication
Algorithm
(classical method)

Take advantage of developed techniques

Halve the number of iteration

Double the speed

New Modular Multiplication

New transformation constant $\mathrm{R}=\mathrm{r}^{\alpha \mathrm{n}}<\mathrm{M}$

$$
\alpha: \alpha \in \mathbb{Q}, 0<\alpha<1, \alpha \cdot n \in Z
$$

Original Residue System
New Residue System

$$
\left(Z_{M}, x\right)
$$

$\left(Z_{M}^{\prime},(8)\right.$
U 4> $X=U \cdot r^{a n} \bmod M$

Isomorphic
$U \times V=U \cdot V \bmod M \triangleleft \ldots \ldots \ldots \ldots\rangle X \circledast Y=X \cdot Y \cdot r^{-a n} \bmod M$

V 4.............................> $Y=V \cdot r^{a n} \bmod M$

New Modular Multiplication

Definition:

$$
\begin{aligned}
& M: n \text { - word, } \operatorname{gcd}(r, M)=1, R=r^{a n}<M \\
& \alpha: \alpha \in \mathbb{Q}, 0<\alpha<1, \alpha \cdot n \in Z \\
& X, Y \in Z_{M}=\{0,1, \cdots, M-1\}
\end{aligned}
$$

$$
X \geqslant Y \triangleq X \cdot Y \cdot r^{-a n} \bmod M
$$

Computation of the New Modular Multiplication

$$
\begin{aligned}
& X \otimes Y \triangleq X \cdot Y \cdot r^{-\alpha n} \bmod M \\
& Y_{H} \cdot r^{\alpha n}+Y_{L} \\
&= X \cdot\left(Y_{H} \cdot r^{\alpha n}+Y_{L}\right) \cdot r^{-\alpha n} \bmod M \\
&= X \cdot Y_{H} \cdot Y^{\alpha n} \cdot Y^{\alpha n}+X \cdot Y_{L} \cdot r^{-\alpha n} \bmod M \\
&= X \cdot Y_{H}+X \cdot Y_{L} \cdot r^{-\alpha n} \bmod M
\end{aligned}
$$

Computation of the New Modular Multiplication

$X \circledast Y=X \cdot Y_{H}+X \cdot Y_{L} \cdot r^{-\alpha n} \bmod M$

Interleaved Modular Multiplication Algorithm

Montgomery Multiplication Algorithm

New Modular Multiplication

 [Algorithm KT]Input: $\quad \mathrm{M}: \mathrm{r}^{\mathrm{n}-1}<\mathrm{M}<\mathrm{r}^{\mathrm{n}}, \mathrm{M}$ odd

$$
X, Y \in Z_{M}^{\prime}
$$

Output: $Z=X \cdot Y \cdot r^{-a n} \bmod M\left(Z \in Z_{M}^{\prime}\right)$
Algorithm:
Step 1: $A:=X ; M:=M ; S:=0 ; T:=0 ;$

$$
B_{H}:=Y_{H} ; B_{L}:=Y_{L}
$$

Step 2: \{ $\mathrm{S}:=$ Interleaved_ modmul $\left(\mathrm{A}, \mathrm{B}_{\mathrm{H}}\right)$; $\mathrm{T}:=$ Montgomery _ modmul $\left(\mathrm{A}, \mathrm{B}_{\mathrm{L}}\right)$; \}
Step 3: $Z:=(S+T) \bmod M$;

New Modular Multiplication

 Process of Computation ($\alpha=1 / 2$)The multiplier is processed from both sides in parallel

$$
X: Y=X \cdot Y_{H}+X \cdot Y_{L} \cdot r^{-n / 2} \bmod M
$$

New Modular Multiplication

Conversions between residue systems

Conversions can be done in half the time
No need for pre-computed constants
Original Residue System
New Residue System

Hardware Implementation

Hardware Implementation

From the Original to the New Residue System

Hardware Implementation

From the New to the Original Residue System

Hardware Implementation

Characteristics of the Circuit Based on the New Algorithm

- Can be constructed using already designed circuits of lower radix.
- Amount of hardware proportional to n.
- When using multipliers of similar performance ($\alpha=1 / 2$), execution time n/2+1 clk cycles, i.e. acceleration twice the speed of the original multipliers.

Hardware Implementation

Different Combination of Multipliers By changing α it is possible to use different combinations of multipliers

Summary

- We proposed a new computation method for speeding up modular multiplication. Multiplier processed from both sides in parallel.
- With multipliers of similar performance, number of clock cycles halved. Multipliers of different performance can be used by changing the value of α.
* The proposed method suitable for both hardware implementation; and software implementation in a multiprocessor environment.
* The technique used in the proposed method can be adapted for operation in the binary extended field GF(2m).

