Hardware Acceleration of the Tate Pairing in Characteristic Three

Philipp Grabher (Graz) and Dan Page (Bristol)

CHES 2005

Introduction

- Pairing based cryptography is a (fairly) new area:
- Has provided new instantiations of Identity Based Encryption.
- Has provided a wealth of new "hard problems" and proof techniques.
- Has opened a new area for those interested in implementation.
- So far, most implementations have been done in software; our main aims before we started were:
- Compare hardware polynomial and normal basis arithmetic in the finite fields $\mathbb{F}_{3^{97}}$ and \mathbb{F}_{389} respectivley.
- Ideally we wanted same field size but curve selection and FPGA size bit us.
- Evaluate the size and performance of a flexible pairing accelerator for use in constrained environments.
- Ignore the fact that η-pairings, MNT curves and \mathbb{F}_{p} arithmetic might be a more modern and better way to go :-)

Pairing Based Cryptography (1)

- For our purposes, the pairing is just a map between groups:

$$
e: \mathbb{G}_{1} \times \mathbb{G}_{1} \rightarrow \mathbb{G}_{2}
$$

where we usually set $\mathbb{G}_{1}=E\left(\mathbb{F}_{q}\right)$ and $\mathbb{G}_{2}=\mathbb{F}_{q^{k}}$.

- The main interesting property of the map is termed bilinearity:

$$
e(a \cdot P, b \cdot Q)=e(P, Q)^{a \cdot b}
$$

which means we can play about with the exponents at will.

- To work in a useful way, the map also needs to be:
- Non-degenerate, i.e. not all $e(P, Q)=1$.
- Computable, i.e. we can evaluate $e(P, Q)$ easily.
- In real applications we generally use the Tate or Weil pairing.

Pairing Based Cryptography (2)

- Such pairings were originally thought to only be useful in a destructive setting.
- Boneh-Franklin identity based encryption is perhaps the most interesting constructive use:
- The trust authority or TA has a public key $P_{T A}=s \cdot P$ for a public value P and secret value s.
- A users public key is calculated from the string ID using a hash function as $P_{I D}=H_{1}(I D)$.
- A users secret key is calculated by the TA as $S_{I D}=s \cdot P_{I D}$.
- To encrypt M, select a random r and compute the tuple:

$$
C=\left(r \cdot P, M \oplus H_{2}\left(e\left(P_{I D}, P_{T A}\right)^{r}\right)\right)
$$

- To decrypt $C=(U, V)$, we compute the result:

$$
M=V \oplus H_{2}\left(e\left(S_{I D}, U\right)\right)
$$

Pairing Based Cryptography (3)

- We are interested in the case where $q=3^{m}$ and $k=6$ since this is attractive from a parameterisation perspective.
- Along with the standard Miller-style BKLS algorithm, there are two closed-form algorithms in this case.
- Both compute $e(P, Q)$ with $P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$.

The Duursma-Lee Algorithm

$$
\begin{aligned}
& f \leftarrow 1 \\
& \text { for } i=1 \text { upto } m \text { do } \\
& \qquad \begin{array}{l}
x_{1} \leftarrow x_{1}^{3} \\
y_{1} \leftarrow y_{1}^{3} \\
\mu \\
\quad \\
\quad \lambda \leftarrow x_{1}+x_{2}+b \\
g \leftarrow-y_{1} y_{2} \sigma-\mu^{2} \\
\\
f \leftarrow f-\mu \rho-\rho^{2} \\
\\
\quad x_{2} \leftarrow x_{2}^{1 / 3} \\
\\
y_{2} \leftarrow y_{2}^{1 / 3}
\end{array} \\
& \text { return } f^{q^{3}-1}
\end{aligned}
$$

The Kwon-BGOS Algorithm

$$
\begin{aligned}
& f \leftarrow 1 \\
& x_{2} \leftarrow x_{2}^{3} \\
& y_{2} \leftarrow y_{2}^{3} \\
& d \leftarrow m b \\
& \text { for } i=1 \text { upto } m \text { do } \\
& x_{1} \leftarrow x_{1}^{9} \\
& y_{1} \leftarrow y_{1}^{9} \\
& \mu \leftarrow x_{1}+x_{2}+d \\
& \lambda \leftarrow y_{1} y_{2} \sigma-\mu^{2} \\
& g \leftarrow \lambda-\mu \rho-\rho^{2} \\
& \quad f \leftarrow f^{3} \cdot g \\
& y_{2} \leftarrow-y_{2} \\
& d \leftarrow d-b \\
& \text { return } f^{q^{3}-1}
\end{aligned}
$$

Hardware Implementation (1)

- We need quite a few different operations:
- $E\left(\mathbb{F}_{q}\right)$: Addition, Tripling, Scalar Multiplication.
- \mathbb{F}_{q} : Addition, Multiplication, Inversion, Cube, Cube Root.
- $\mathbb{F}_{q^{k}}$: Addition, Multiplication, Inversion, Cube.
- Everything depends on high-performance \mathbb{F}_{q} arithmetic.
- We approach is to implement only \mathbb{F}_{q} arithmetic in hardware.
- One can obviously get some different results by exploiting the parallelism in $\mathbb{F}_{q^{k}}$ or by building a dedicated pairing circuit.
Point Addition

$\mathbb{F}_{q^{k}}$
\mathbb{F}_{q}

Hardware Implementation (2)

- In either basis, our field elements are polynomials with coefficients in \mathbb{F}_{3}.
- We take the now conventional approach of representing the i-th coefficient a_{i} as two bits:

$$
\begin{aligned}
& a_{i}^{L}=a_{i} \bmod 2 \\
& a_{i}^{H}=a_{i} \operatorname{div} 2
\end{aligned}
$$

and then constructing basic arithmetic cells using a fairly low-cost arrangement of logic gates:

Hardware Implementation (4)

- In a polynomial basis, the multiplication $c=a \cdot b$ is performed by normal polynomial multiplication and reduction.
- We use a digit-wise rather than bit-wise multiplier design:

- We were able to fit a digit-size of 4 onto our experimental platform.

Hardware Implementation (4)

- In a normal basis, the multiplication $c=a \cdot b$ is performed according to the formula:

$$
c_{k}=\sum_{i=0}^{m-1} a_{k+i} \cdot \sum_{j=0}^{m-1} M_{i, j} \cdot b_{k+j}
$$

- The matrix M essentially determines how reduction works, it is very sparse so the whole operation is fairly efficient.
- The structure of the multiplier allows a similar digit-wise approach, we used a digit-size of 2 :

Hardware Implementation (4)

- In a polynomial basis, cubing can be calculated in a similar way to squaring in characteristic two:
- That is, we expand the element using the identity:

$$
\left(a_{i} x^{i}\right)^{3}=a_{i}^{3} x^{3 i}=a_{i} x^{3 i}
$$

- Because of reduction, the cube operation dominates critial path of design since unreduced element is large.
- Cube root can be calculated using the method of Barreto, for our field $u=32$ and $v=5$:

$$
\begin{aligned}
t_{0} & =\sum_{i=0}^{u} a_{3 i} x^{i} \\
t_{1} & =\sum_{i=1}^{u=0} a_{3 i+1} x^{i} \\
t_{2} & =\sum_{i=0}^{u-1} a_{3 i+2} x^{i} \\
\sqrt[3]{a} & =t_{0}+t_{1}^{\ll 2 u+1}-t_{1}^{<u+v+1}+t_{1}^{\ll 2 v+2}-2 t_{2}^{<u+1}-2 t_{2}^{\ll v+1}
\end{aligned}
$$

which turns out to be quite efficient.

Hardware Implementation (5)

- In a normal basis, cube and cube root are just cyclic shifts of the coefficients:

$$
\begin{aligned}
a^{3} & =\left(a_{m-1}, a_{0}, \ldots, a_{m-3}, a_{m-2}\right) \\
\sqrt[3]{a} & =\left(a_{1}, a_{2}, \ldots, a_{m-1}, a_{0}\right)
\end{aligned}
$$

- This was the whole point of investigating their use:
- Cube is used extensively throughout point and pairing arithmetic.
- Efficient cube root it vital for Duursma-Lee algorithm.

Hardware Implementation (6)

- Inversion was always going to be unpleasant:
- Fortunately we only need it once to perform the final powering which computes the result $f^{q^{3}-1}$.
- This computation is decomposed into $f^{3^{3 m}} \cdot f^{-1}$.
- The field representation means we only need one inversion in \mathbb{F}_{q} (and some extra operations) to invert in $\mathbb{F}_{q^{k}}$.
- Since it is only used once, we didn't feel extra hardware was worthwhile.
- Could have used a variant of the binary EEA, but instead resorted to powering:

$$
a^{-1}=a^{3^{m}-2}
$$

- This turns out to be not too bad but can obviously be improved on depending on the constraints imposed.

Results (1)

- Used a Xilinx ML300 prototyping device for implementation.
- Essentially, we put an embedded processor and $\mathbb{F}_{3^{m}}$ ALU on the Virtex-II PRO FPGA.
- The hope was to mimic the kind of architecture in a real processor design.

Results (2)

$\mathbb{F}_{3} 97$ in Polynomial Basis

	Slices	Cycles	Instructions	Speed	
				At 16 MHz	At 150 MHz
Add	112	3	1	-	-
Subtract	112	3	1	-	-
Multiply	946	28	1	-	-
Cube	128	3	1	-	-
Cube Root	115	3	1	-	-
Pairing					
Duursma-Lee	-	59946	7857	$3746.6 \mu \mathrm{~s}$	$399.4 \mu \mathrm{~s}$
Kwon	-	64602	9409	$4037.6 \mu \mathrm{~s}$	$430.7 \mu \mathrm{~s}$
Powering	-	4941	397	$308.8 \mu \mathrm{~s}$	$32.9 \mu \mathrm{~s}$
Total	-	-	-		

\mathbb{F}_{389} in Normal Basis

	Slices	Cycles	Instructions		Speed	
				At 16 MHz	At 85 MHz	
Add	102	3	1	-	-	
Subtract	102	3	1	-	-	
Multiply	1505	48	1	-	-	
Cube	0	3	1	-	-	
Cube Root	0	3	1	-	-	
Pairing						
Duursma-Lee	-	89046	7857	$5563.3 \mu \mathrm{~s}$	$1047.6 \mu \mathrm{~s}$	
Kwon	-	93702	9409	$5856.3 \mu \mathrm{~s}$	$1102.4 \mu \mathrm{~s}$	
Powering	-	7941	397	$496.3 \mu \mathrm{~s}$	$93.4 \mu \mathrm{~s}$	
Total	-	-	-			

Conclusions

- We can comfortably compute the pairing in under a second even at low clock speeds.
- There wasn't a lot of advantage from the normal basis arithmetic:
- Cube and cube root are cheap but multiplier is expensive.
- The polynomial basis cube root method of Baretto is single-cycle.
- Finding suitable curves and so on is a nightmare ...
- Using the Kwon-BGOS method seems a better choice.
- There is plenty of scope for miniaturisation given performance margin:
- Using Kwon-BGOS removes need for cube-root hardware.
- Can adjust multiplier digit size, maybe even use a bit-wise design.
- Share addition logic between adder and multiplier.
- Reduce storage size by improving register allocation or introduce spillage into main memory.

