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Introduction

I Pairing based cryptography is a (fairly) new area:
I Has provided new instantiations of Identity Based Encryption.
I Has provided a wealth of new “hard problems” and proof

techniques.
I Has opened a new area for those interested in implementation.

I So far, most implementations have been done in software; our
main aims before we started were:

I Compare hardware polynomial and normal basis arithmetic in
the finite fields F397 and F389 respectivley.

I Ideally we wanted same field size but curve selection and FPGA
size bit us.

I Evaluate the size and performance of a flexible pairing
accelerator for use in constrained environments.

I Ignore the fact that η-pairings, MNT curves and Fp arithmetic
might be a more modern and better way to go :-)
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Pairing Based Cryptography (1)

I For our purposes, the pairing is just a map between groups:

e : G1 ×G1 → G2

where we usually set G1 = E(Fq) and G2 = Fqk .
I The main interesting property of the map is termed bilinearity:

e(a · P, b ·Q) = e(P, Q)a·b

which means we can play about with the exponents at will.
I To work in a useful way, the map also needs to be:

I Non-degenerate, i.e. not all e(P, Q) = 1.
I Computable, i.e. we can evaluate e(P, Q) easily.

I In real applications we generally use the Tate or Weil pairing.
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Pairing Based Cryptography (2)

I Such pairings were originally thought to only be useful in a
destructive setting.

I Boneh-Franklin identity based encryption is perhaps the most
interesting constructive use:

I The trust authority or TA has a public key PTA = s · P for a public
value P and secret value s.

I A users public key is calculated from the string ID using a hash
function as PID = H1(ID).

I A users secret key is calculated by the TA as SID = s · PID.

I To encrypt M, select a random r and compute the tuple:

C = (r · P, M ⊕ H2(e(PID, PTA)r )).

I To decrypt C = (U, V ), we compute the result:

M = V ⊕ H2(e(SID, U)).
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Pairing Based Cryptography (3)

I We are interested in the case where q = 3m and k = 6 since
this is attractive from a parameterisation perspective.

I Along with the standard Miller-style BKLS algorithm, there are
two closed-form algorithms in this case.

I Both compute e(P, Q) with P = (x1, y1) and Q = (x2, y2).

The Duursma-Lee Algorithm

f ← 1
for i = 1 upto m do

x1 ← x3
1

y1 ← y3
1

µ← x1 + x2 + b
λ← −y1y2σ − µ2

g ← λ− µρ− ρ2

f ← f · g

x2 ← x1/3
2

y2 ← y1/3
2

return f q3−1

The Kwon-BGOS Algorithm

f ← 1
x2 ← x3

2
y2 ← y3

2
d ← mb
for i = 1 upto m do

x1 ← x9
1

y1 ← y9
1

µ← x1 + x2 + d
λ← y1y2σ − µ2

g ← λ− µρ− ρ2

f ← f 3 · g
y2 ← −y2
d ← d − b

return f q3−1
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Hardware Implementation (1)
I We need quite a few different operations:

I E(Fq): Addition, Tripling, Scalar Multiplication.
I Fq : Addition, Multiplication, Inversion, Cube, Cube Root.
I Fqk : Addition, Multiplication, Inversion, Cube.

I Everything depends on high-performance Fq arithmetic.
I We approach is to implement only Fq arithmetic in hardware.
I One can obviously get some different results by exploiting the

parallelism in Fqk or by building a dedicated pairing circuit.

Point Addition Point Tripling Pairing

Fqk

Fq
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Hardware Implementation (2)
I In either basis, our field elements are polynomials with

coefficients in F3.
I We take the now conventional approach of representing the i-th

coefficient ai as two bits:

aL
i = ai mod 2

aH
i = ai div 2

and then constructing basic arithmetic cells using a fairly
low-cost arrangement of logic gates:

bL

bL

bH

aL

aH

aH rL

rH

r

aL

a

bH

b

ADD

rH

rL

aL

aL

bL

bL

aH

aH

bH

bH

rH

rL

aL

aL

bL

bL

aH

aH

bH

bH

MUL

r

a

b
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Hardware Implementation (4)

I In a polynomial basis, the multiplication c = a · b is performed
by normal polynomial multiplication and reduction.

I We use a digit-wise rather than bit-wise multiplier design:
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I We were able to fit a digit-size of 4 onto our experimental
platform.
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Hardware Implementation (4)

I In a normal basis, the multiplication c = a · b is performed
according to the formula:

ck =
m−1∑
i=0

ak+i ·
m−1∑
j=0

Mi,j · bk+j

I The matrix M essentially determines how reduction works, it is
very sparse so the whole operation is fairly efficient.

I The structure of the multiplier allows a similar digit-wise
approach, we used a digit-size of 2:
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Hardware Implementation (4)

I In a polynomial basis, cubing can be calculated in a similar way
to squaring in characteristic two:

I That is, we expand the element using the identity:

(aix
i)3 = a3

i x3i = aix
3i

I Because of reduction, the cube operation dominates critial path
of design since unreduced element is large.

I Cube root can be calculated using the method of Barreto, for
our field u = 32 and v = 5:

t0 =
∑u

i=0 a3ix i

t1 =
∑u−1

i=0 a3i+1x i

t2 =
∑u−1

i=0 a3i+2x i

3
√

a = t0 + t�2u+1
1 − t�u+v+1

1 + t�2v+2
1 − 2t�u+1

2 − 2t�v+1
2

which turns out to be quite efficient.
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Hardware Implementation (5)

I In a normal basis, cube and cube root are just cyclic shifts of
the coefficients:

a3 = (am−1, a0, . . . , am−3, am−2),
3
√

a = (a1, a2, . . . , am−1, a0).

I This was the whole point of investigating their use:
I Cube is used extensively throughout point and pairing arithmetic.
I Efficient cube root it vital for Duursma-Lee algorithm.
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Hardware Implementation (6)

I Inversion was always going to be unpleasant:
I Fortunately we only need it once to perform the final powering

which computes the result f q3−1.
I This computation is decomposed into f 33m · f−1.
I The field representation means we only need one inversion in Fq

(and some extra operations) to invert in Fqk .

I Since it is only used once, we didn’t feel extra hardware was
worthwhile.

I Could have used a variant of the binary EEA, but instead
resorted to powering:

a−1 = a3m−2

I This turns out to be not too bad but can obviously be improved
on depending on the constraints imposed.
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Results (1)
I Used a Xilinx ML300 prototyping device for implementation.
I Essentially, we put an embedded processor and F3m ALU on

the Virtex-II PRO FPGA.
I The hope was to mimic the kind of architecture in a real

processor design.

PowerPC MicroBlaze

Registers

F3m ALU

USB Ethernet LCD ATA PCMCIA
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Results (2)

F
397 in Polynomial Basis

Slices Cycles Instructions Speed
At 16 MHz At 150 MHz

Add 112 3 1 - -
Subtract 112 3 1 - -
Multiply 946 28 1 - -
Cube 128 3 1 - -
Cube Root 115 3 1 - -
Pairing
Duursma-Lee - 59946 7857 3746.6µs 399.4µs
Kwon - 64602 9409 4037.6µs 430.7µs
Powering - 4941 397 308.8µs 32.9µs
Total 4481 - - - -

F
389 in Normal Basis

Slices Cycles Instructions Speed
At 16 MHz At 85 MHz

Add 102 3 1 - -
Subtract 102 3 1 - -
Multiply 1505 48 1 - -
Cube 0 3 1 - -
Cube Root 0 3 1 - -
Pairing
Duursma-Lee - 89046 7857 5563.3µs 1047.6µs
Kwon - 93702 9409 5856.3µs 1102.4µs
Powering - 7941 397 496.3µs 93.4µs
Total 4233 - - - -
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Conclusions

I We can comfortably compute the pairing in under a second
even at low clock speeds.

I There wasn’t a lot of advantage from the normal basis
arithmetic:

I Cube and cube root are cheap but multiplier is expensive.
I The polynomial basis cube root method of Baretto is single-cycle.
I Finding suitable curves and so on is a nightmare ...
I Using the Kwon-BGOS method seems a better choice.

I There is plenty of scope for miniaturisation given performance
margin:

I Using Kwon-BGOS removes need for cube-root hardware.
I Can adjust multiplier digit size, maybe even use a bit-wise

design.
I Share addition logic between adder and multiplier.
I Reduce storage size by improving register allocation or introduce

spillage into main memory.
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