Hardware Acceleration of the Tate Pairing in Characteristic Three

Philipp Grabher (Graz) and Dan Page (Bristol)

CHES 2005

Philipp Grabher (Graz) and Dan Page (Bristol) Hardware Acceleration of the Tate Pairing in Characteristic Three

Introduction

- Pairing based cryptography is a (fairly) new area:
 - Has provided new instantiations of Identity Based Encryption.
 - Has provided a wealth of new "hard problems" and proof techniques.
 - ► Has opened a new area for those interested in implementation.
- So far, most implementations have been done in software; our main aims before we started were:
 - ► Compare hardware polynomial and normal basis arithmetic in the finite fields F_{3⁹⁷} and F_{3⁸⁹} respectivley.
 - Ideally we wanted same field size but curve selection and FPGA size bit us.
 - Evaluate the size and performance of a flexible pairing accelerator for use in constrained environments.
 - Ignore the fact that η-pairings, MNT curves and F_p arithmetic might be a more modern and better way to go :-)

Pairing Based Cryptography (1)

► For our purposes, the pairing is just a map between groups:

 $e:\mathbb{G}_1\times\mathbb{G}_1\to\mathbb{G}_2$

where we usually set $\mathbb{G}_1 = E(\mathbb{F}_q)$ and $\mathbb{G}_2 = \mathbb{F}_{q^k}$.

The main interesting property of the map is termed bilinearity:

$$e(a \cdot P, b \cdot Q) = e(P, Q)^{a \cdot b}$$

which means we can play about with the exponents at will.

- To work in a useful way, the map also needs to be:
 - Non-degenerate, i.e. not all e(P, Q) = 1.
 - Computable, i.e. we can evaluate e(P, Q) easily.

In real applications we generally use the Tate or Weil pairing.

Pairing Based Cryptography (2)

- Such pairings were originally thought to only be useful in a destructive setting.
- Boneh-Franklin identity based encryption is perhaps the most interesting constructive use:
 - The trust authority or TA has a public key $P_{TA} = s \cdot P$ for a public value *P* and secret value *s*.
 - A users public key is calculated from the string *ID* using a hash function as $P_{ID} = H_1(ID)$.
 - A users secret key is calculated by the TA as $S_{ID} = s \cdot P_{ID}$.
- ▶ To encrypt *M*, select a random *r* and compute the tuple:

$$C = (r \cdot P, M \oplus H_2(e(P_{ID}, P_{TA})^r)).$$

• To decrypt C = (U, V), we compute the result:

$$M = V \oplus H_2(e(S_{ID}, U)).$$

Philipp Grabher (Graz) and Dan Page (Bristol) Hardware Acceleration of the Tate Pairing in Characteristic Three

Pairing Based Cryptography (3)

- We are interested in the case where $q = 3^m$ and k = 6 since this is attractive from a parameterisation perspective.
- Along with the standard Miller-style BKLS algorithm, there are two closed-form algorithms in this case.
- Both compute e(P, Q) with $P = (x_1, y_1)$ and $Q = (x_2, y_2)$.

The Duursma-Lee Algorithm The Kwon-BGOS Algorithm

$$\begin{array}{ll} f \leftarrow 1 & f \leftarrow 1 \\ \text{for } i = 1 \text{ upto } m \text{ do} & x_2 \leftarrow x_3^3 \\ x_1 \leftarrow x_1^3 & y_2 \leftarrow y_3^3 \\ y_1 \leftarrow y_1^3 & d \leftarrow mb \\ \mu \leftarrow x_1 + x_2 + b & \text{for } i = 1 \text{ upto } m \text{ do} \\ \lambda \leftarrow -y_1 y_2 \sigma - \mu^2 & x_1 \leftarrow x_1^9 \\ g \leftarrow \lambda - \mu \rho - \rho^2 & y_1 \leftarrow y_1^9 \\ f \leftarrow f \cdot g & \mu \leftarrow x_1 + x_2 + d \\ x_2 \leftarrow x_2^{1/3} & \lambda \leftarrow y_1 y_2 \sigma - \mu^2 \\ y_2 \leftarrow y_2^{1/3} & g \leftarrow \lambda - \mu \rho - \rho^2 \\ \text{return } f^{q^3-1} & y_2 \leftarrow -y_2 \\ d \leftarrow d - b \\ \end{array}$$

Hardware Implementation (1)

- We need quite a few different operations:
 - $E(\mathbb{F}_q)$: Addition, Tripling, Scalar Multiplication.
 - ▶ **F**_q: Addition, Multiplication, Inversion, Cube, Cube Root.
 - \mathbb{F}_{q^k} : Addition, Multiplication, Inversion, Cube.
- Everything depends on high-performance \mathbb{F}_q arithmetic.
 - We approach is to implement only \mathbb{F}_q arithmetic in hardware.
 - ► One can obviously get some different results by exploiting the parallelism in F_{q^k} or by building a dedicated pairing circuit.

Hardware Implementation (2)

- In either basis, our field elements are polynomials with coefficients in 𝔽₃.
- We take the now conventional approach of representing the *i*-th coefficient a_i as two bits:

and then constructing basic arithmetic cells using a fairly low-cost arrangement of logic gates:

Hardware Implementation (4)

- ▶ In a polynomial basis, the multiplication $c = a \cdot b$ is performed by normal polynomial multiplication and reduction.
- ► We use a digit-wise rather than bit-wise multiplier design:

We were able to fit a digit-size of 4 onto our experimental platform.

Hardware Implementation (4)

In a normal basis, the multiplication c = a · b is performed according to the formula:

$$c_k = \sum_{i=0}^{m-1} a_{k+i} \cdot \sum_{j=0}^{m-1} M_{i,j} \cdot b_{k+j}$$

- The matrix *M* essentially determines how reduction works, it is very sparse so the whole operation is fairly efficient.
- The structure of the multiplier allows a similar digit-wise approach, we used a digit-size of 2:

Philipp Grabher (Graz) and Dan Page (Bristol) Hardware Acceleration of the Tate Pairing in Characteristic Three

Hardware Implementation (4)

- In a polynomial basis, cubing can be calculated in a similar way to squaring in characteristic two:
- That is, we expand the element using the identity:

$$(a_i x^i)^3 = a_i^3 x^{3i} = a_i x^{3i}$$

- Because of reduction, the cube operation dominates critial path of design since unreduced element is large.
- Cube root can be calculated using the method of Barreto, for our field u = 32 and v = 5:

$$\begin{split} t_0 &= \sum_{i=0}^u a_{3i} x^i \\ t_1 &= \sum_{i=0}^{u-1} a_{3i+1} x^i \\ t_2 &= \sum_{i=0}^{u-1} a_{3i+2} x^i \\ \sqrt[3]{a} &= t_0 + t_1^{\ll 2u+1} - t_1^{\ll u+v+1} + t_1^{\ll 2v+2} - 2t_2^{\ll u+1} - 2t_2^{\ll v+1} \end{split}$$

which turns out to be quite efficient.

Hardware Implementation (5)

In a normal basis, cube and cube root are just cyclic shifts of the coefficients:

$$\mathbf{a}^3 = (a_{m-1}, a_0, \dots, a_{m-3}, a_{m-2}),$$

 $\sqrt[3]{a} = (a_1, a_2, \dots, a_{m-1}, a_0).$

- This was the whole point of investigating their use:
 - Cube is used extensively throughout point and pairing arithmetic.
 - Efficient cube root it vital for Duursma-Lee algorithm.

Hardware Implementation (6)

- Inversion was always going to be unpleasant:
 - ► Fortunately we only need it once to perform the final powering which computes the result f^{q^3-1} .
 - This computation is decomposed into $f^{3^{3m}} \cdot f^{-1}$.
 - ► The field representation means we only need one inversion in F_q (and some extra operations) to invert in F_{q^k}.
- Since it is only used once, we didn't feel extra hardware was worthwhile.
- Could have used a variant of the binary EEA, but instead resorted to powering:

$$a^{-1} = a^{3^m - 2}$$

This turns out to be not too bad but can obviously be improved on depending on the constraints imposed.

Results (1)

- ► Used a Xilinx ML300 prototyping device for implementation.
- ► Essentially, we put an embedded processor and F_{3^m} ALU on the Virtex-II PRO FPGA.
- The hope was to mimic the kind of architecture in a real processor design.

Philipp Grabher (Graz) and Dan Page (Bristol) Hardware Acceleration of the Tate Pairing in Characteristic Three

Results (2)

$\mathbb{F}_{3^{97}}$ in Polynomial Basis					
	Slices	Cycles	Instructions	Speed	
				At 16 MHz	At 150 MHz
Add	112	3	1	-	-
Subtract	112	3	1	-	-
Multiply	946	28	1		-
Cube	128	3	1	- 1	-
Cube Root	115	3	1	-	-
Pairing					
Duursma-Lee	-	59946	7857	3746.6µs	399.4µs
Kwon	-	64602	9409	4037.6µs	430.7µs
Powering	-	4941	397	308.8µs	32.9µs
Total	4481	-	-	-	-
$\mathbb{F}_{3^{89}}$ in Normal Basis					
	Slices	Cycles	Instructions	Speed	
				At 16 MHz	At 85 MHz
Add	102	3	1	-	-
Subtract	102	3	1		-
Multiply	1505	48	1		-
Cube	0	3	1		-
Cube Root	0	3	1	-	-
Pairing					
Duursma-Lee	-	89046	7857	5563.3µs	1047.6µs
Kwon	-	93702	9409	5856.3µs	1102.4µs
Powering	-	7941	397	496.3µs	93.4µs
Total	4233	-	-	-	-

Philipp Grabher (Graz) and Dan Page (Bristol) Hardware Acceleration of the Tate Pairing in Characteristic Three

Conclusions

- We can comfortably compute the pairing in under a second even at low clock speeds.
- There wasn't a lot of advantage from the normal basis arithmetic:
 - Cube and cube root are cheap but multiplier is expensive.
 - The polynomial basis cube root method of Baretto is single-cycle.
 - Finding suitable curves and so on is a nightmare ...
 - Using the Kwon-BGOS method seems a better choice.
- There is plenty of scope for miniaturisation given performance margin:
 - Using Kwon-BGOS removes need for cube-root hardware.
 - Can adjust multiplier digit size, maybe even use a bit-wise design.
 - Share addition logic between adder and multiplier.
 - Reduce storage size by improving register allocation or introduce spillage into main memory.

