Improved Higher-Order Side-Channel Attacks with FPGA Experiments

Eric Peeters*, François-Xavier Standaert, Nicolas Donckers, Jean-Jacques Quisquater UCL Crypto Group CHES 2005

Outline

- Power Analysis: CMOS models
- Block Cipher
- Boolean Masking
- High-Order Power Attack
 - With perfect measurements
 - With real measurements
- Comparison
- Conclusions

Power Consumption Model

Most IC's → CMOS

 $O \; \stackrel{=}{\sim} \; H[d \oplus d']$

perfect real

Different Contexts

Hamming Weight model

$$O = H[d]$$

Hamming Distance model: depends on d
 and d'

$$O = H[d \oplus d']$$

First Round of a Block Cipher

Targeting FPGA

- Pipelined Implementation
 - Structure fed with a new message every clock cycle
- Hamming Distance model
 - Consumption before the S-box
 - $O = H[m \oplus k \oplus m' \oplus k]$
 - $O = H[m \oplus m']$
 - Consumption after the S-box
 - $O = H[S(m \oplus k) \oplus S(m' \oplus k)]$

Boolean Masking

- Focus on 2nd order Boolean masking
- Extendable to higher-order Boolean masking

UCL Crypto Group

HO Attack with Perfect Measurements

- $O = H[(S(m \oplus k) \oplus q) \oplus (S(m' \oplus k) \oplus q')]$ + $H[q \oplus q']$
- Let us define the machine state
 - $\Sigma = S(m \oplus k) \oplus S(m' \oplus k)$
- And the random state $R = [q \oplus q']$

$O(\Sigma, R) = H[\Sigma \oplus R] + H[R]$

 Machine state ∑ directly related to a Probability Density Functions (PDFs)

Maximum Likelihood Approach

Example

- Correct key guess: '0001'
- Sequence of observation **O*={5,3,6,5,...}**
- M*={5,12,10,14,0,...}
- R*={3,11,6,12,9,...}
- 4-bit S-box: S=[9,2,15,8,3,14,5,11,13,4,10,6,0,7,1,12]

First Guess k₀='0000'?

O*={5,3,6,5,...}

Correct Guess k₁='0001'

UCL Crypto Group Microelectronics Laboratory

Compute the Likelihood for Each Key Guess

$$P[O^*|\Sigma^*(k_0)] = P[O_1 = 5|\Sigma_1(k_0)] \times P[O_2 = 3|\Sigma_2(k_0)] \times ..$$

= $\frac{8}{16} \times 0 \times ... = 0$

$P[O^*|\Sigma^*(k_1)] = P[O_1 = 5|\Sigma_1(k_1)] \times P[O_2 = 3|\Sigma_2(k_1)] \times \dots$ $= \frac{6}{16} \times \frac{6}{16} \times \dots$

HO Attacks with Algorithmic Noise

- Due to the bit transitions of non targeted Sboxes
- The noise is assumed to be Gaussian

Simulated Attack With 8 S-boxes in Parallel: N_S=8

HO Attacks with Real Measurements

- PDFs? → Require similar chip to evaluate the mean and variance of each Gaussians
 → Or machine learning methods to
 - extract the mixture of Gaussians' characteristics

FPGA Results

Comparison with Previous Work

Second Order Power Attack on FPGA

Correlation	>>	Maximum likelihood
~130,000		~12,000
N _S =1		N _S =8
[Standaert et al. ITCC '05]		Ours
≈ Multiple bits Waddl	e's attack	
[Waddle et al. CHES	'04]	

Remark

• $E[x^2] = E[x]^2 + V[x]$ [Waddle et al. CHES '04] Squaring the trace yields key dependency since the variances are key dependent

Conclusions

 A key guess defines a succession of machine states related to different PDFs

We can compute the likelihood of the different key candidates from a sequence of observations

- Maximum likelihood is very efficient in this context
- FPGAs considered to be a challenging devices for SCA: noise
- Applicable to other devices: simulation with a 8-bit microprocessor $\rightarrow \sim 50$ measurements

Questions?

