IAIK

Masked Dual-Rail Pre-Charge Logic DPA-Resistance without Routing Constraints

Thomas Popp, Stefan Mangard

Presentation Outline

- Introduction
- Problems of Current DPA-Resistant Logic Styles
- MDPL Cells and Circuits
- Experimental Results
- Conclusions and Future Work

vlsi

- Differential Power Analysis (DPA)
 - Implementation attack, side-channel attack
 - Used side channel: power consumption
 - Exploits data-dependency of a device's power consumption to get the secret key

Introduction

DPA countermeasures overview

- Protocol level
 - e.g. ephemeral keys
- Algorithmic level
 - e.g. masked algorithms
- Architectural level
 - e.g. noise engines, random delay cycles
- Gate level
 - Dual-rail pre-charge (DRP) logic styles
 - Masking logic styles

VLSI

Introduction

- DPA-resistant logic styles overview
 - Advantages
 - Hardware/software designers almost completely freed from considering DPA
 - "push-button" solution (semi-custom design)
 - Examples:
 - DRP: SABL, WDDL (C. Tiri et al.)
 - Masking: RSL (D. Suzuki et al.)

Masking CMOS Logic

Standard CMOS Logic	Masked CMOS Logic								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	tions value node	ne no. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16		m_{t-1} 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 1 0	$d_{m_{t-1}}$ 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} d_t & r \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 1 & 0$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} {\rm Energy}\\ E_{00}\\ E_{00}\\ E_{00}\\ E_{00}\\ E_{01}\\ E_{01}\\ E_{01}\\ E_{01}\\ E_{10}\\ E_{10}\\ E_{10}\\ E_{10}\\ E_{10}\\ E_{11}\\ E_{11}\\ E_{11}\\ E_{11}\\ E_{11}\\ \end{array}$	$\frac{\text{Probability}}{\frac{1}{4}p_{00}}$ $\frac{\frac{1}{4}p_{01}}{\frac{1}{4}p_{11}}$ $\frac{1}{4}p_{10}$ $\frac{1}{4}p_{11}$ $\frac{1}{4}p_{00}$ $\frac{1}{4}p_{11}$ $\frac{1}{4}p_{00}$ $\frac{1}{4}p_{11}$ $\frac{1}{4}p_{00}$ $\frac{1}{4}p_{11}$ $\frac{1}{4}p_{00}$ $\frac{1}{4}p_{11}$ $\frac{1}{4}p_{00}$ $\frac{1}{4}p_{11}$ $\frac{1}{4}p_{10}$ $\frac{1}{4}p_{10}$ $\frac{1}{4}p_{11}$
$ \begin{split} \mathcal{E}(DM_{d_t}) &= \mathcal{E}(M_{d_t=1}) - \mathcal{E}(M_{d_t=0}) & \text{DPA attack} \\ &= \frac{p_{11}E_{11} + p_{01}E_{01}}{p_{11} + p_{01}} - \frac{p_{00}E_{00} + p_{10}E_{10}}{p_{00} + p_{10}} & \mathcal{E}(M_{d_t=0}) = \mathcal{E}(M_{d_t=1}) = \frac{1}{4} \left(E_{00} + E_{01} + E_{10} + E_{11} \right) \\ &= \mathcal{E}(DM_{d_t}) = 0 & \mathcal{E}(DM_{d_t}) = 0 \\ &\neq 0 & \text{CMOS Logic:} \\ &= E_{00} \approx E_{01} \ll E_{10} \neq E_{01} \end{split} $									
VLSI Side-Channel Analysis Lab	< ⊷10 7 ⊷01			C	HES 20	005,	Edinb	urgh	6

Problems of Current DPA-Resistant Logic Styles

- Usability in semi-custom design flows
 - Design and characterization of new standard cells required
 - Tough constraints, e.g.
 - balancing of complementary wires (DRP)
 - careful timing of enable signal chains (RSL)
- Masking: glitches in masked CMOS circuits reduce its DPA resistance
 - RSA 2005: Mangard, Popp, Gammel

Masked Dual-Rail Pre-Charge Logic

MDPL

- Masked: for DPA resistance
 - one mask m for all signals: $d = d_m \oplus m$
- Dual-rail pre-charged: to avoid glitches
- Based on common standard cells
- No tough constraints
 - no balanced wiring required
- Suitable for semi-custom design

MDPL Combinational Cells

MDPL AND

Line no.	a_m	b_m	m	q_{m}	$\overline{a_m}$	$\overline{b_m}$	\overline{m}	$\overline{q_m}$
1	0	0	0	0	1	1	1	1
2	0	0	1	0	1	1	0	1
3	0	1	0	0	1	0	1	1
4	0	1	1	1	1	0	0	0
5	1	0	0	0	0	1	1	1
6	1	0	1	1	0	1	0	0
7	1	1	0	1	0	0	1	0
8	1	1	1	1	0	0	0	0

- pre-charge wave propagates correctly
- no glitches: monotonic transitions, MAJ is a monotonic increasing (positive) function

VLS

MDPL Combinational Cells

MDPL NAND

MDPL OR (MDPL NOR)

Line no.	a_m	b_m	m	q_{m}		am	$\overline{b_m}$	\overline{m}	$\overline{q_m}$
1	-0	0	0	0		1	1	1	1
2	0	0	1	0		1	1	0	1
3	0	1	0	1		1	0	1	0
4	0	1	1	0		1	0	0	1
5	1	0	0	1	Π	0	1	1	0
6	1	0	1	0		0	1	0	1
7	1	1	0	1		0	0	1	0
8	1	1	1	1		0	0	0	0

MDPL Combinational Cells

MDPL XOR (MDPL XNOR)

MDPL Sequential Cells

MDPL DFF

- performs mask switching (m, m_n)
- starts pre-charge wave

MDPL Cells Implementations

Possibilities

Out of common standard cells

- cheap
- but not optimal:
 - time-of-evaluation of MAJ gate
 - not all internal nodes of the MAJ gate are precharged
- New "CMOS" standard cells
- New "DRP" standard cells
 - mask considered in differential pull-down network

VLSI

MDPL Cells Summary

MDPL cells and their CMOS implementations (austriamicrosystems C35B3 standard cell library)

	CMOS implementation	Area (gate	equivalents) of	Ratio
MDPL cell	of MDPL cell	MDPL cell	std. CMOS cell	$\frac{MDPL}{CMOS}$
Inverter	Wire swapping	0	0.67	0
Buffer	2×Buffer	2	1	2
AND, OR (2-in)	2×MAJ (3-in)	4	1.67	2.4
NAND, NOR (2-in)	2×MAJ (3-in)	4	1	4
XOR (2-in)	6×MAJ (3-in)	12	2.33	5.1
XNOR (2-in)	6×MAJ (3-in)	12	2	6
D-Flip-Flop	$2 \times \text{AND}, 2 \times \text{OR} \text{ (both 2-in)}$			
	$2 \times MAJ$ (3-in), $1 \times D$ -FF	17.67	5	3.5

Indicates 4 to 5 times area increase

MDPL Circuits

- General architecture
 - 1 mask for the whole circuit, changed every clock cycle
 - SPA on mask nets not possible

MDPL Circuits

- MDPL semi-custom design
 - HDL high-level design
 - Synthesis
 - restrict available standard cells
 - Logic style conversion
 - cell output load OK?
 - replace CMOS cells by corresponding MDPL cells
 - removal of inverters
 - insertion of CMOS <-> MDPL interface circuitry
 - CTG
 - set clock-tree leaf pins within MDPL DFFs
 - Place
 - Route

Experimental Results

 Comparison of DPA-resistance of CMOS, WDDL and MDPL NAND gates concerning unbalanced complementary

wires

Experimental Results

- Comparison of an AES module implemented in CMOS and in MDPL
 - Area
 - 4.54x higher for MDPL
 - Speed
 - 0.58x of CMOS
 - Power
 - 4x 6x higher for MDPL

Experimental Results

- DPA-resistance (simulated power traces)
 - output of first SubBytes operation was targeted
 - 256 encryptions

AES implemented in MDPL:

Conclusions and Future Work

- MDPL is suitable for semi-custom design
 - Only commonly available standard cells are necessary
 - No balancing wires constraint is usually the biggest problem of many DPA-resistant logic styles
- Experimental results are OK
 - Practical results expected from SCARD project
 - http://www.scard-project.org
- Trade-off is in increased area and power and reduced speed

IAIK Graz University of Technology

The Side-Channel Analysis Lab

http://www.iaik.at/research/sca-lab

