Edinburgh, UK, 29 August – 01 September 2005

Data remanence in Flash Memory Devices

Sergei Skorobogatov

Computer Laboratory

Edinburgh, UK, 29 August – 01 September 2005

Data remanence

Residual representation of data after erasure Magnetic media SRAM and DRAM ■Low-temperature data remanence Long-term retention effects EEPROM and Flash Should be possible No information available Independent testing was performed

Non-volatile memories

EEPROM and Flash

Widely used in microcontrollers and smartcards

Advantages

- Electrically programmable and erasable
- Internal charge pumps (no external high voltages necessary)
- High endurance (>100,000 E/W cycles)
- Long data retention (>40 years)

Disadvantages

- Larger cell size than Mask ROM
- Flash erased in blocks
- Longer write/erase time than SRAM

Edinburgh, UK, 29 August – 01 September 2005

Structure of non-volatile memories

EEPROM

Flash EEPROM

Erase

Read

Data remanence in non-volatile memories

■ EPROM, EEPROM and Flash

Floating-gate transistors, $10^3 - 10^5 e^-$, $\Delta V_{TH} = 3 \dots 4 V_{TH}$

Levels of remanence threat

- File system (erasing a file \rightarrow undelete)
- File backup (software features)
- Smart memory (hardware buffers)
- Memory cell
- Possible outcomes
 - Circumvention of microcontroller or smartcard security
 - Information leakage through shared EEPROM areas between different applications in smartcards

Attacks on EPROM/EEPROM devices

Erase with UV light followed by power glitching
 Memory and password/fuse are erased simultaneously
 V_{DD} variation or power glitching
 Read sense circuit: V_{TH} = K V_{DD}, K ~ 0.5
 Not suitable for 0.35 µm and smaller technologies

Attacks on EEPROM/Flash devices

Electrical erase

- Memory and password are erased simultaneously
 - Fast process (difficult to control erasure)
 - \blacksquare V_{TH} drops too low (power glitching does not work)
 - Cell charge alteration does not work
 - Voltage monitors and internally stabilized power supply
 - Internal charge pumps and timing control
 - Difficult to terminate the erase/programming cycle

Experimental part

- Is it possible to measure a V_{TH} close to 0 V?
- Is any significant residual charge left after a normal erase operation?
- Is it possible to distinguish between neverprogrammed and programmed cells?
- Countermeasures?

Edinburgh, UK, 29 August – 01 September 2005

Experimental part

Data remanence evaluation in PIC16F84A

- 100 µV precision power supply
- 1 µs timing control

Measuring V_{TH} close to 0 V in PIC16F84A

Power glitch to reduce V_{ref} to 0.5 V
 Exploiting after-erase discharging delay

 Accidentally discovered 5 years ago
 Shifts V_{TH} up by 0.6 - 0.9 V

 Apply both techniques simultaneously:

 V_{TH} = K V_{DD} - V_W
 V_{TH} = -0.4 ...2.0 V

Edinburgh, UK, 29 August – 01 September 2005

Test residual charge after erase

Recovering data from erased PIC16F84A

Large difference in V_{TH} between cells in the array
 Measure the cell's V_{TH} before and after an extra erase cycle

Never-programmed and programmed cells

PIC16F84A comes programmed to all 0's
 10,000 erase cycles to fully discharge cells. Measure V_{TH}
 Program to all 0's, then another 10,000 erase cycles. Measure V_{TH}
 Still noticeable change of ΔV_{TH} = 40 mV

Programming cells before erasure

- Cannot successfully recover information from PIC16F84A if it was programmed to all 0's before the erase operation
- This is a standard procedure in some Flash and EEPROM devices:
 - Intel ETOX Flash memory (P28F010)
 - Microchip KeeLoq HCS200
- Not used in modern EEPROM/Flash memory devices

Other ways of data remanence testing

Semi-invasive approach (access to passivation layer)

Measure changes inside memory transistors

Influence on cell characteristics (V_{TH})

Influence on read-sense circuit (V_{ref})

Invasive approach (access through passivation layer)

Modify the read-sense circuit of the memory

Direct connection to internal memory lines

Edinburgh, UK, 29 August – 01 September 2005

Semi-invasive testing

Test setup

Focusing the laser (100x objective)

Semi-invasive testing

■ Images of the PIC16F84A EEPROM (0.9 µm, 2M) ■ Change $V_{ref} = f(P_L)$ to measure V_{TH}

Optical

Laser scanned (OBIC)

Edinburgh, UK, 29 August – 01 September 2005

Semi-invasive testing

Images of the ATmega8 EEPROM (0.35 µm, 3M)

Laser scanned (OBIC)

Edinburgh, UK, 29 August – 01 September 2005

Semi-invasive testing

- Focus a laser on the ATmega8 die using a 100x objective in order to change V_{ref}
- Less successful (<10% after one erase cycle) due to multiple metal layers and polished insulation layers

Countermeasures

- Cycle EEPROM/Flash 10 100 times with new random data before writing sensitive information to them
- Program (charge) all EEPROM/Flash cells before erasing them
- Remember about "intelligent" memories, backup and temporary files in file systems
- Remember that memory devices are identical within the same family:
 - everything which is valid for PIC16F84A will work for PIC16F627/628, PIC16F870/871/872 and PIC16F873/874/876/877
- Use latest high-density devices, as smaller scales make semiinvasive attacks less feasible
- Cryptography can help to make data recovery more difficult. E.g. store longer pre-key R instead of key: K=h(R)

Edinburgh, UK, 29 August – 01 September 2005

Conclusions

- Floating-gate memories (EPROM, EEPROM and Flash) have data-remanence problems
- Information from some samples can be recovered even after 100 erase cycles
- Even where the residual charge cannot yet be detected with existing methods, future technologies may permit this
- Secure devices should be tested for dataremanence effects