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Motivation

Need to implement unstructured functions defined over finite fields
or rings:

S-boxes in block and stream ciphers (DES, AES)

Round functions in hash functions (MD5, SHA-1)

Public key schemes defined over finite fields or rings
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Implementation

Common representation

f (x1, x2, x3) = c0 + c1x1 + c2x2 + c3x3 + c4x1x2 +

c5x1x3 + c6x2x3 + c7x1x2x3

where ci , xi ∈ R.

Typically implemented as parallel circuit as given in the
description

Components of the circuit are isolated blocks implementing
operations in R.
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A Question

Idea: We can view the entire function as being defined over
GF (2)

Which approach is more efficient?

implement the circuit in two levels first as a circuit over R, and
then implement operations in R as boolean circuits
implement the whole circuit as a boolean circuit, i.e. over
GF (2).
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Horner’s Method

In the univariate case a polynomial of degree r − 1 over Zm is
represented as

u(x) = u0 + u1x + u2x
2 + . . . + ur−1x

r−1 , ui ∈ Zm .

Applying Horner’s method

u(x) = u0 + x(u1 + x(u2 + x(u3 + . . . + x(ur−2 + xur−1)) . . .)

is evaluated by computing only r − 1 additions and r − 1
multiplications with delay T = (r − 1)TA + (r − 1)TM
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The Multivariate Version of Horner’s Method

Level #Coefficient #Mult
Polynomials or #Add

1 r (r − 1)
2 r2 (r − 1)r
3 r3 (r − 1)r2

...
...

...
n rn (r − 1)rn−1

Table: Number of coefficient polynomials introduced in each level
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The Multivariate Version of Horner’s Method

The evaluation of an n-variate polynomial over Zm of
maximum degree (r − 1) in all variables requires at most
rn − 1 additions and rn − 1 multiplications in Zm.

The delay of a parallel circuit (of n levels) is at most
T = n(r − 1)TA + n(r − 1)TM .
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An Example

Let Zm = Z2 and f = f (x1, x2, x3, x4) represent a multivariate
polynomial f : (Z2)

4 7→ Z2 explicitly given as

f = x1x2x3x4 + x1x2x3 + x1x2x4 + x2x3x4 + x1x3 + x3x4

+ x2x4 + x3x4 + x3 + x2 + x1 + 1 .

Applying Horner’s algorithm we convert the polynomial into the
following representation

f = 1x1 [1x2{1x3(1x4 + 1) + (1x4 + 0)}+ {1x3(0x4 + 1) + (1x4 + 1)}]
+ [1x2{1x3(1x4 + 0) + (1x4 + 1)}+ {1x3(1x4 + 1) + (0x4 + 1)}]
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An Observation

In the last level we have 8 polynomial evaluations of the form
ax4 + b where a, b ∈ Z2.

However, there can be only 22 such polynomials.

Multivariate version of Horner’s algorithm is redundant!

Same argument can be repeated for lower levels as well.

Need to find the level where redundancy vanishes.
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The Optimization Strategy

Level #Coefficient #Mult #Unique #Mult
Polynomials or #Add Polynomials or #Add

1 r (r − 1) mnr (r − 1)mrn

2 r2 (r − 1)r m(n−1)r (r − 1)mrn−1

3 r3 (r − 1)r2 m(n−2)r (r − 1)mrn−2

...
...

...
...

...

n − 2 rn−2 (r − 1)rn−3 m3r (r − 1)mr3

n − 1 rn−1 (r − 1)rn−2 m2r (r − 1)mr2

n rn (r − 1)rn−1 mr (r − 1)mr

Table: Number of coefficient polnomials and unique polynomials at each
level
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Finding the Sweetspot

Find the level k in which the number of coefficients exceeds
the number of unique polynomials

Find the smallest value of k satisfying

rk ≥ mrn−k+1

Take the logarithm of both sides

krk ≥ rn+1 logr m .

Define c = rn+1 logr m and take the log of both sides w.r.t
base r

k ≥ logr c − logr k .
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Finding the Sweetspot

Keep substituting value of k

k = logr c−logr (logr c−logr k(logr c−logr k(logr c−logr (. . .) . . .) .

The exact solution is defined in terms of the Lambert-W
function [2]

k ≥ W (log r
rn+1

logm r
)/ log r

where W (x) is defined as the inverse of the map x → xex .

Approximate k by neglecting terms after two levels of
substitution

k ≈ logr c − logr (logr c) .
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The Circuit Complexity

Derive complexity in terms of Zm additions and multiplications

C =
k∑

i=1

(r − 1)r i−1 +
n−k∑
i=1

(r − 1)mr i

= (rk − 1) + (r − 1)(mr + mr2
+ mr3

+ . . . + mrn−k
)

≈ rk + rmrn−k

Substitute values derived from other identities1

C =
c

logr c
+ rm

n logm r
r

=
rn+1 logr m

(n + 1) + logr (logr m)
+ r

n
r
+1

Addition and multiplication complexities grow by O( rn

n ).

1See paper for details
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Modified Horner over Prime Fields GF (p)

Given n > p the evaluation of an n-variate polynomial over
GF (p) requires at most O(pn

n ) additions and multiplications in
GF (p) with a delay of O((p − 1)(n − logp n)).

Muller [5] gives a construction gives a method for evaluating

arbitrary n-variate polynomials over GF (2) with O(2n+1

n+1 )
complexity

For p = 2 our construction is equivalent to Muller’s
construction.
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Comparison of Circuit Area

The bit-level algorithm implementing a polynomial evaluation
over GF (p) has bit-complexity

CB = O

(
(log2 p)

2n log2 p+1

n log2 p + 1

)
= O

(
2pn

n

)
.

Assuming a GF (p) multiplication operation takes (log2 p)2 bit
operations we obtain the bit complexity of word level
evaluation as follows

CW = O

(
pn+1

n + 1
(log2 p)2

)
.

The bit-level algorithm is p
2 (log2 p)2 times more area efficient
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Comparison of Time Complexities

The bit-level approach yields a time complexity of

TB = O(n log2 p − log2(n log2 p)).

Ignoring the constant operations the overall computation takes

TW = O((p − 1)(log2 log2 p)(n − logp n)).

gate delays in the word-level approach.

The bit-level algorithm is roughly (p−1)(log2 log2 p)
log2 p times faster
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The Circuit

x
2

x
2

x
k−

1
x

k−
1

x
n

x
n

x
n

x
2

(r
−

1)
r 

m
ul

tip
lie

s

x
k−

1

x
k−

1

x
2

(r
−

1)
r 

   
  m

ul
tip

lie
s

  k
−

2 r 
   

 b
lo

ck
s

x
k

x
k

x
k

x
k

(r
−

1)
m

   
   

m
ul

tip
lie

s
   

r 

x
n

x
1

f

r 
bl

oc
ks

r−
1 

m
ul

tip
lie

s

k−
2

m
   

   
  b

lo
ck

s
  n

−
k+

1

n−
k+

1

0
1

1
1

(r
−

1)
m

  m
ul

tip
lie

s
  r

 m
   

bl
oc

ks
r

Sunar, Cyganski Comparison of Bit and Word Level Algorithms for Evaluating Unstructured Functions over Finite Rings



Conclusion

We have develop a generic technique for optimally implements
multivariate functions defined over finite rings.

We have shown that implementing arbitrary (or generic)
circuits over GF (2) is more efficient

The bit-level algorithm is p
2 (log2 p)2 times more area efficient

The bit-level algorithm is roughly (p−1)(log2 log2 p)
log2 p times faster

Fan-out may be a problem for the bit-level algorithm!
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