Comparison of Bit and Word Level Algorithms for Evaluating Unstructured Functions over Finite Rings

Berk Sunar David Cyganski sunar,cyganski@wpi.edu http://crypto.wpi.edu

Worcester Polytechnic Institute
Department of Electrical & Computer Engineering
Worcester, Massachusetts 01609, USA

CHES 2005

Motivation

Need to implement unstructured functions defined over finite fields or rings:

- S-boxes in block and stream ciphers (DES, AES)
- Round functions in hash functions (MD5, SHA-1)
- Public key schemes defined over finite fields or rings

Implementation

Common representation

$$f(x_1, x_2, x_3) = c_0 + c_1 x_1 + c_2 x_2 + c_3 x_3 + c_4 x_1 x_2 + c_5 x_1 x_3 + c_6 x_2 x_3 + c_7 x_1 x_2 x_3$$

where $c_i, x_i \in R$.

- Typically implemented as parallel circuit as given in the description
- Components of the circuit are isolated blocks implementing operations in R.

A Question

- Idea: We can view the entire function as being defined over GF(2)
- Which approach is more efficient?
 - implement the circuit in two levels first as a circuit over *R*, and then implement operations in *R* as boolean circuits
 - implement the whole circuit as a boolean circuit, i.e. over GF(2).

Horner's Method

In the univariate case a polynomial of degree r-1 over Z_m is represented as

$$u(x) = u_0 + u_1 x + u_2 x^2 + \ldots + u_{r-1} x^{r-1}$$
, $u_i \in Z_m$.

Applying Horner's method

$$u(x) = u_0 + x(u_1 + x(u_2 + x(u_3 + \ldots + x(u_{r-2} + xu_{r-1})) \ldots)$$

is evaluated by computing only r-1 additions and r-1 multiplications with delay $\mathcal{T}=(r-1)\mathcal{T}_A+(r-1)\mathcal{T}_M$

The Multivariate Version of Horner's Method

Level	#Coefficient	#Mult	
	Polynomials	or $\#Add$	
1	r	(r-1)	
2	r^2	(r-1)r	
3	r^3	$(r-1)r^2$	
÷	<u>:</u>	:	
n	r ⁿ	$(r-1)r^{n-1}$	

Table: Number of coefficient polynomials introduced in each level

The Multivariate Version of Horner's Method

- The evaluation of an n-variate polynomial over Z_m of maximum degree (r-1) in all variables requires at most r^n-1 additions and r^n-1 multiplications in Z_m .
- The delay of a parallel circuit (of n levels) is at most $T = n(r-1)T_A + n(r-1)T_M$.

An Example

Let $Z_m = Z_2$ and $f = f(x_1, x_2, x_3, x_4)$ represent a multivariate polynomial $f: (Z_2)^4 \mapsto Z_2$ explicitly given as

$$f = x_1 x_2 x_3 x_4 + x_1 x_2 x_3 + x_1 x_2 x_4 + x_2 x_3 x_4 + x_1 x_3 + x_3 x_4 + x_2 x_4 + x_3 x_4 + x_3 + x_2 + x_1 + 1.$$

Applying Horner's algorithm we convert the polynomial into the following representation

$$f = 1x_1 \left[1x_2 \{ 1x_3 (1x_4 + 1) + (1x_4 + 0) \} + \{ 1x_3 (0x_4 + 1) + (1x_4 + 1) \} \right]$$

$$+ \left[1x_2 \{ 1x_3 (1x_4 + 0) + (1x_4 + 1) \} + \{ 1x_3 (1x_4 + 1) + (0x_4 + 1) \} \right]$$

An Observation

- In the last level we have 8 polynomial evaluations of the form $ax_4 + b$ where $a, b \in Z_2$.
- However, there can be only 2² such polynomials.
- Multivariate version of Horner's algorithm is redundant!
- Same argument can be repeated for lower levels as well.
- Need to find the level where redundancy vanishes.

The Optimization Strategy

Level	#Coefficient	#Mult	#Unique	#Mult
	Polynomials	or $\#Add$	Polynomials	or $\#Add$
1	r	(r - 1)	m ^{nr}	$(r-1)m^{r^n}$
2	r^2	(r - 1)r	$m^{(n-1)r}$	$(r-1)m^{r^{n-1}}$
3	r^3	$(r-1)r^{2}$	$m^{(n-2)r}$	$(r-1)m^{r^{n-2}}$
:	:	:	:	:
n-2	r^{n-2}	$(r-1)r^{n-3}$	m ^{3r}	$(r-1)m^{r^3}$
n-1	r^{n-1}	$(r-1)r^{n-2}$	m^{2r}	$(r-1)m^{r^2}$
n	r ⁿ	$(r-1)r^{n-1}$	m ^r	$(r-1)m^r$

Table: Number of coefficient polnomials and unique polynomials at each level

Finding the Sweetspot

- Find the level k in which the number of coefficients exceeds the number of unique polynomials
- Find the smallest value of k satisfying

$$r^k \geq m^{r^{n-k+1}}$$

Take the logarithm of both sides

$$kr^k \ge r^{n+1} \log_r m$$
.

• Define $c = r^{n+1} \log_r m$ and take the log of both sides w.r.t base r

$$k \ge \log_r c - \log_r k$$
.

Finding the Sweetspot

• Keep substituting value of k

$$k = \log_r c - \log_r (\log_r c - \log_r k (\log_r c - \log_r k (\log_r c - \log_r (\dots) \dots)).$$

 The exact solution is defined in terms of the Lambert-W function [2]

$$k \ge W(\log r \frac{r^{n+1}}{\log_m r})/\log r$$

where W(x) is defined as the inverse of the map $x \to xe^x$.

 Approximate k by neglecting terms after two levels of substitution

$$k \approx \log_r c - \log_r(\log_r c)$$
.

The Circuit Complexity

ullet Derive complexity in terms of Z_m additions and multiplications

$$C = \sum_{i=1}^{k} (r-1)r^{i-1} + \sum_{i=1}^{n-k} (r-1)m^{r^{i}}$$

$$= (r^{k}-1) + (r-1)(m^{r} + m^{r^{2}} + m^{r^{3}} + \dots + m^{r^{n-k}})$$

$$\approx r^{k} + rm^{r^{n-k}}$$

Substitute values derived from other identities¹

$$C = \frac{c}{\log_r c} + rm^{\frac{n\log_m r}{r}}$$
$$= \frac{r^{n+1}\log_r m}{(n+1) + \log_r(\log_r m)} + r^{\frac{n}{r}+1}$$

• Addition and multiplication complexities grow by $O(\frac{r^n}{n})$.

¹See paper for details

Modified Horner over Prime Fields GF(p)

- Given n > p the evaluation of an n-variate polynomial over GF(p) requires at most $O(\frac{p^n}{n})$ additions and multiplications in GF(p) with a delay of $O((p-1)(n-\log_p n))$.
- Muller [5] gives a construction gives a method for evaluating arbitrary *n*-variate polynomials over GF(2) with $O(\frac{2^{n+1}}{n+1})$ complexity
- For p = 2 our construction is equivalent to Muller's construction.

Comparison of Circuit Area

• The bit-level algorithm implementing a polynomial evaluation over GF(p) has bit-complexity

$$C_B = O\left((\log_2 p) \frac{2^{n\log_2 p + 1}}{n\log_2 p + 1}\right) = O\left(\frac{2p^n}{n}\right).$$

• Assuming a GF(p) multiplication operation takes $(\log_2 p)^2$ bit operations we obtain the bit complexity of word level evaluation as follows

$$C_W = O\left(\frac{p^{n+1}}{n+1}(\log_2 p)^2\right) .$$

• The bit-level algorithm is $\frac{p}{2}(\log_2 p)^2$ times more area efficient

Comparison of Time Complexities

• The bit-level approach yields a time complexity of

$$T_B = O(n \log_2 p - \log_2(n \log_2 p)).$$

Ignoring the constant operations the overall computation takes

$$T_W = O((p-1)(\log_2 \log_2 p)(n - \log_p n)).$$

gate delays in the word-level approach.

• The bit-level algorithm is roughly $\frac{(p-1)(\log_2\log_2p)}{\log_2p}$ times faster

The Circuit

Conclusion

- We have develop a generic technique for optimally implements multivariate functions defined over finite rings.
- We have shown that implementing arbitrary (or generic) circuits over GF(2) is more efficient
- The bit-level algorithm is $\frac{p}{2}(\log_2 p)^2$ times more area efficient
- The bit-level algorithm is roughly $\frac{(p-1)(\log_2\log_2 p)}{\log_2 p}$ times faster
- Fan-out may be a problem for the bit-level algorithm!

Bibliography

- A. Borodin. Horners Rule is Uniquely Optimal. In Z. Kohavi and A. Paz, editors, Proceedings of an International Symposium on the Theory of Machines and Computations, pages 45–57. Academic Press, 1971.
- R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth. On the Lambert W Function. Advances in Computational Mathematics, 5:329–359, 1996.
- W. G. Horner. A new method of solving numerical equations of all orders by continuous approximation. Philos. Trans. Roy. Soc. London, 109:308–335, 1819.
- D. E. Knuth. The Art of Computer Programming. Volume 2: Seminumerical Algorithms. Addison-Wesley, Reading, Massachusetts, USA, 2nd edition, 1981.
- D. E. Muller. Complexity in Electronic Switching Circuits. IRE Transactions on Electronic Circuits, (5):15–19, 1956.
- NIST FIPS PUB 180-1. Secure Hash Standard. Federal Information Processing Standards, National Bureau of Standards, U.S. Department of Commerce, April 1995.
- NIST FIPS PUB 46-3. Data Encryption Standard. Federal Information Processing Standards, National Bureau of Standards, U.S. Department of Commerce, 1977.
- U.S. Department of Commerce/National Institute of Standard and Technology. Advanced Encryption Standard (AES), November 2001.
- A. M. Ostrowski. On two problems in abstract algebra connected with Horner's rule. pages 40–48. Academic Press, 1954. presented to Richard von Mises.
- V. Ya. Pan. Methods for Computing Values of Polynomials. Russian Mathematical Surveys, 21(1):105–136, 1966.
- R.L. Rivest. RFC 1321: The MD5 Message-Digest Algorithm. Corporation for National Research Initiatives, Internet Engineering Task Force, Network Working Group, April 1992.
- C. E. Shannon. The Synthesis of Two-terminal Switching Circuits. Bell System Technical Journal, 28(1):59–98, 1949.
- ETSI/SAGE Specification. Specification of the 3GPP confidentiality and integrity algorithms; part 2: KASUMI specification. 3GPP TS 35.202, European Telecommunications Standards Institute, Sophia-Antipolis Cedex, France, November 1999. Draft.

