Comparison of Bit and Word Level Algorithms for Evaluating Unstructured Functions over Finite Rings

Berk Sunar David Cyganski
sunar, cyganski@wpi.edu
http://crypto.wpi.edu

Worcester Polytechnic Institute
Department of Electrical \& Computer Engineering
Worcester, Massachusetts 01609, USA
CHES 2005

Motivation

Need to implement unstructured functions defined over finite fields or rings:

- S-boxes in block and stream ciphers (DES, AES)
- Round functions in hash functions (MD5, SHA-1)
- Public key schemes defined over finite fields or rings

Implementation

- Common representation

$$
\begin{aligned}
f\left(x_{1}, x_{2}, x_{3}\right)= & c_{0}+c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3}+c_{4} x_{1} x_{2}+ \\
& c_{5} x_{1} x_{3}+c_{6} x_{2} x_{3}+c_{7} x_{1} x_{2} x_{3}
\end{aligned}
$$

where $c_{i}, x_{i} \in R$.

- Typically implemented as parallel circuit as given in the description
- Components of the circuit are isolated blocks implementing operations in R.

A Question

- Idea: We can view the entire function as being defined over GF(2)
- Which approach is more efficient?
- implement the circuit in two levels first as a circuit over R, and then implement operations in R as boolean circuits
- implement the whole circuit as a boolean circuit, i.e. over $G F(2)$.

Horner's Method

In the univariate case a polynomial of degree $r-1$ over Z_{m} is represented as

$$
u(x)=u_{0}+u_{1} x+u_{2} x^{2}+\ldots+u_{r-1} x^{r-1} \quad, \quad u_{i} \in Z_{m}
$$

Applying Horner's method

$$
u(x)=u_{0}+x\left(u_{1}+x\left(u_{2}+x\left(u_{3}+\ldots+x\left(u_{r-2}+x u_{r-1}\right)\right) \ldots\right)\right.
$$

is evaluated by computing only $r-1$ additions and $r-1$
multiplications with delay $T=(r-1) T_{A}+(r-1) T_{M}$

Level	\#Coefficient Polynomials	\#Mult or \#Add
1	r	$(r-1)$
2	r^{2}	$(r-1) r$
3	r^{3}	$(r-1) r^{2}$
\vdots	\vdots	\vdots
n	r^{n}	$(r-1) r^{n-1}$

Table: Number of coefficient polynomials introduced in each level

- The evaluation of an n-variate polynomial over Z_{m} of maximum degree $(r-1)$ in all variables requires at most $r^{n}-1$ additions and $r^{n}-1$ multiplications in Z_{m}.
- The delay of a parallel circuit (of n levels) is at most $T=n(r-1) T_{A}+n(r-1) T_{M}$.

An Example

Let $Z_{m}=Z_{2}$ and $f=f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ represent a multivariate polynomial $f:\left(Z_{2}\right)^{4} \mapsto Z_{2}$ explicitly given as

$$
\begin{aligned}
f & =x_{1} x_{2} x_{3} x_{4}+x_{1} x_{2} x_{3}+x_{1} x_{2} x_{4}+x_{2} x_{3} x_{4}+x_{1} x_{3}+x_{3} x_{4} \\
& +x_{2} x_{4}+x_{3} x_{4}+x_{3}+x_{2}+x_{1}+1 .
\end{aligned}
$$

Applying Horner's algorithm we convert the polynomial into the following representation

$$
\begin{aligned}
f & =1 x_{1}\left[1 x_{2}\left\{1 x_{3}\left(1 x_{4}+1\right)+\left(1 x_{4}+0\right)\right\}+\left\{1 x_{3}\left(0 x_{4}+1\right)+\left(1 x_{4}+1\right)\right\}\right] \\
& +\left[1 x_{2}\left\{1 x_{3}\left(1 x_{4}+0\right)+\left(1 x_{4}+1\right)\right\}+\left\{1 x_{3}\left(1 x_{4}+1\right)+\left(0 x_{4}+1\right)\right\}\right]
\end{aligned}
$$

An Observation

- In the last level we have 8 polynomial evaluations of the form $a x_{4}+b$ where $a, b \in Z_{2}$.
- However, there can be only 2^{2} such polynomials.
- Multivariate version of Horner's algorithm is redundant!
- Same argument can be repeated for lower levels as well.
- Need to find the level where redundancy vanishes.

The Optimization Strategy

Level	\#Coefficient Polynomials	\#Mult or \#Add	\#Unique Polynomials	\#Mult or \#Add
1	r	$(r-1)$	$m^{n r}$	$(r-1) m^{r^{n}}$
2	r^{2}	$(r-1) r$	$m^{(n-1) r}$	$(r-1) m^{r^{n-1}}$
3	r^{3}	$(r-1) r^{2}$	$m^{(n-2) r}$	$(r-1) m^{r^{n-2}}$
\vdots	\vdots	\vdots	\vdots	\vdots
$n-2$	r^{n-2}	$(r-1) r^{n-3}$	$m^{3 r}$	$(r-1) m^{r^{3}}$
$n-1$	r^{n-1}	$(r-1) r^{n-2}$	$m^{2 r}$	$(r-1) m^{r^{2}}$
n	r^{n}	$(r-1) r^{n-1}$	m^{r}	$(r-1) m^{r}$

Table: Number of coefficient polnomials and unique polynomials at each level

Finding the Sweetspot

- Find the level k in which the number of coefficients exceeds the number of unique polynomials
- Find the smallest value of k satisfying

$$
r^{k} \geq m^{r^{n-k+1}}
$$

- Take the logarithm of both sides

$$
k r^{k} \geq r^{n+1} \log _{r} m
$$

- Define $c=r^{n+1} \log _{r} m$ and take the \log of both sides w.r.t base r

$$
k \geq \log _{r} c-\log _{r} k
$$

Finding the Sweetspot

- Keep substituting value of k

$$
k=\log _{r} c-\log _{r}\left(\log _{r} c-\log _{r} k\left(\log _{r} c-\log _{r} k\left(\log _{r} c-\log _{r}(\ldots) \ldots\right)\right.\right.
$$

- The exact solution is defined in terms of the Lambert- W function [2]

$$
k \geq W\left(\log r \frac{r^{n+1}}{\log _{m} r}\right) / \log r
$$

where $W(x)$ is defined as the inverse of the map $x \rightarrow x e^{x}$.

- Approximate k by neglecting terms after two levels of substitution

$$
k \approx \log _{r} c-\log _{r}\left(\log _{r} c\right)
$$

- Derive complexity in terms of Z_{m} additions and multiplications

$$
\begin{aligned}
C & =\sum_{i=1}^{k}(r-1) r^{i-1}+\sum_{i=1}^{n-k}(r-1) m^{r^{i}} \\
& =\left(r^{k}-1\right)+(r-1)\left(m^{r}+m^{r^{2}}+m^{r^{3}}+\ldots+m^{r^{n-k}}\right) \\
& \approx r^{k}+r m^{r^{n-k}}
\end{aligned}
$$

- Substitute values derived from other identities ${ }^{1}$

$$
\begin{aligned}
C & =\frac{c}{\log _{r} c}+r m^{\frac{n \log _{m} r}{r}} \\
& =\frac{r^{n+1} \log _{r} m}{(n+1)+\log _{r}\left(\log _{r} m\right)}+r^{\frac{n}{r}+1}
\end{aligned}
$$

- Addition and multiplication complexities grow by $O\left(\frac{r^{n}}{n}\right)$.
${ }^{1}$ See paper for details

Modified Horner over Prime Fields $G F(p)$

- Given $n>p$ the evaluation of an n-variate polynomial over $G F(p)$ requires at most $O\left(\frac{p^{n}}{n}\right)$ additions and multiplications in $G F(p)$ with a delay of $O\left((p-1)\left(n-\log _{p} n\right)\right)$.
- Muller [5] gives a construction gives a method for evaluating arbitrary n-variate polynomials over $G F(2)$ with $O\left(\frac{2^{n+1}}{n+1}\right)$ complexity
- For $p=2$ our construction is equivalent to Muller's construction.

Comparison of Circuit Area

- The bit-level algorithm implementing a polynomial evaluation over $G F(p)$ has bit-complexity

$$
C_{B}=O\left(\left(\log _{2} p\right) \frac{2^{n \log _{2} p+1}}{n \log _{2} p+1}\right)=O\left(\frac{2 p^{n}}{n}\right)
$$

- Assuming a $G F(p)$ multiplication operation takes $\left(\log _{2} p\right)^{2}$ bit operations we obtain the bit complexity of word level evaluation as follows

$$
C_{W}=O\left(\frac{p^{n+1}}{n+1}\left(\log _{2} p\right)^{2}\right)
$$

- The bit-level algorithm is $\frac{p}{2}\left(\log _{2} p\right)^{2}$ times more area efficient

Comparison of Time Complexities

- The bit-level approach yields a time complexity of

$$
T_{B}=O\left(n \log _{2} p-\log _{2}\left(n \log _{2} p\right)\right)
$$

- Ignoring the constant operations the overall computation takes

$$
T_{W}=O\left((p-1)\left(\log _{2} \log _{2} p\right)\left(n-\log _{p} n\right)\right)
$$

gate delays in the word-level approach.

- The bit-level algorithm is roughly $\frac{(p-1)\left(\log _{2} \log _{2} p\right)}{\log _{2} p}$ times faster

Conclusion

- We have develop a generic technique for optimally implements multivariate functions defined over finite rings.
- We have shown that implementing arbitrary (or generic) circuits over $G F(2)$ is more efficient
- The bit-level algorithm is $\frac{p}{2}\left(\log _{2} p\right)^{2}$ times more area efficient
- The bit-level algorithm is roughly $\frac{(p-1)\left(\log _{2} \log _{2} p\right)}{\log _{2} p}$ times faster
- Fan-out may be a problem for the bit-level algorithm!
A. Borodin. Horners Rule is Uniquely Optimal. In Z. Kohavi and A. Paz, editors, Proceedings of an International Symposium on the Theory of Machines and Computations, pages 45-57. Academic Press, 1971.
(2) R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth. On the Lambert W Function. Advances in Computational Mathematics, 5:329-359, 1996.
(3) W. G. Horner. A new method of solving numerical equations of all orders by continuous approximation. Philos. Trans. Roy. Soc. London, 109:308-335, 1819.
4 D. E. Knuth. The Art of Computer Programming. Volume 2: Seminumerical Algorithms. Addison-Wesley, Reading, Massachusetts, USA, 2nd edition, 1981.
(5) D. E. Muller. Complexity in Electronic Switching Circuits. IRE Transactions on Electronic Circuits, (5):15-19, 1956.
(6) NIST FIPS PUB 180-1. Secure Hash Standard. Federal Information Processing Standards, National Bureau of Standards, U.S. Department of Commerce, April 1995.
(7) NIST FIPS PUB 46-3. Data Encryption Standard. Federal Information Processing Standards, National Bureau of Standards, U.S. Department of Commerce, 1977.
(8) U.S. Department of Commerce/National Institute of Standard and Technology. Advanced Encryption Standard (AES), November 2001.
(9) A. M. Ostrowski. On two problems in abstract algebra connected with Horner's rule. pages 40-48. Academic Press, 1954. presented to Richard von Mises.
10 V. Ya. Pan. Methods for Computing Values of Polynomials. Russian Mathematical Surveys, 21(1):105-136, 1966.
11 R.L. Rivest. RFC 1321: The MD5 Message-Digest Algorithm. Corporation for National Research Initiatives, Internet Engineering Task Force, Network Working Group, April 1992.
(12) C. E. Shannon. The Synthesis of Two-terminal Switching Circuits. Bell System Technical Journal, 28(1):59-98, 1949.
(13) ETSI/SAGE Specification. Specification of the 3GPP confidentiality and integrity algorithms; part 2 : KASUMI specification. 3GPP TS 35.202, European Telecommunications Standards Institute, Sophia-Antipolis Cedex, France, November 1999. Draft.

