Enhancing Simple Power-Analysis Attacks on Elliptic Curve Cryptosystems

Motivation

- ECC (especially ECDSA) are getting more and more popular (see for example Austrian Social Insurrance Smart Card).
- ECDSA and ephemeral DH are non-deterministic encryption schemes, thus DPA directly on the scalar point-multiplication is unlikely to work.
- SPA is a direct thread to the ephemeral key used in Q = kP.
- Recent paper by Römer et al. shows that the well known lattice-attack on the DSA can very efficiently also be applied to the ECDSA.
- \Rightarrow the protection of the ephemeral key of the ECDSA is of greatest importance!

Types of SPA countermeasures in SW

- Rearrangment of the field operations in such a way that both EC-PD and EC-PA look alike.
- Make an efficient *always double and always add* algorithm. Use for example special curves (Montgomery form), another parametrization (Hessian form), special recoding, etc. . . .
- Conceal the actions of the bits of the ephemeral key (by recoding and/or randomization).

Assumptions

- Arithmetic of EC allows three operations (EC-PD,EC-PA,EC-PS), whereby EC-PA and EC-PS are essentially the same \Rightarrow they power traces look alike.
- Classical SPA: passive attack, observation of one single EC-SPM, plus knowledge of input and output to EC-SPM.
- Bits of k are independently drawn and identically distributed.

Preliminaries

Figure 1: Transition graph of the standard binary algorithm

- Recoding techniques transform the ephemeral key k. Most simple case uses three digits instead of two.
- Obscuring means that there are more difficult relationships between the bits of the ephemeral key and the elliptic curve operations.

Attacker's Task

Attacker's Task

• Eve observes the sequence of EC-PA and EC-PD operations from the power trace: *ADADDDADADADADDDADADADADADDDADAD*.

Attacker's Task

- Eve observes the sequence of EC-PA and EC-PD operations from the power trace: *ADADDDADADADADDDADADADADADDDADAD*.
- Table consisting of all combinations of keys and sequences for all? \Rightarrow much too large!

Attacker's Task

- Eve observes the sequence of EC-PA and EC-PD operations from the power trace: *ADADDDADADADDDDADADADADDDDADAD*.
- Table consisting of all combinations of keys and sequences for all? ⇒ much too large!
- $X \dots$ sequence of EC operations. For example: X = DDD
- $Y \dots$ sequence of bits. For example: Y = 00.

Attacker's Task

- Eve observes the sequence of EC-PA and EC-PD operations from the power trace: *ADADDDADADADDDDADADADADDDDADAD*.
- Table consisting of all combinations of keys and sequences for all? \Rightarrow much too large!
- $X \dots$ sequence of EC operations. For example: X = DDD
- $Y \dots$ sequence of bits. For example: Y = 00.

$$P(Y = y | X = x) = \frac{P(Y = y \cap X = x)}{P(X = x)}$$
(1)

Institute for Applied Information Processing and Communications

- Point multiplication algorithm \Leftrightarrow Markov process.
- Markov process:

- Point multiplication algorithm ⇔ Markov process.
- Markov process:
 - The next state (event) is only dependent on the present state,

- Point multiplication algorithm ⇔ Markov process.
- Markov process:
 - The next state (event) is only dependent on the present state,
 - but is independent of the state before the present state.

- Point multiplication algorithm \Leftrightarrow Markov process.
- Markov process:
 - The next state (event) is only dependent on the present state,
 - but is independent of the state before the present state.
 - Transitions are determined by a random variable (probability is known or has to be estimated).

- Point multiplication algorithm ⇔ Markov process.
- Markov process:
 - The next state (event) is only dependent on the present state,
 - but is independent of the state before the present state.
 - Transitions are determined by a random variable (probability is known or has to be estimated).
 - Several possible states \Leftrightarrow random variables are entries in a *transition matrix*.

- Point multiplication algorithm \Leftrightarrow Markov process.
- Markov process:
 - The next state (event) is only dependent on the present state,
 - but is independent of the state before the present state.
 - Transitions are determined by a random variable (probability is known or has to be estimated).
 - Several possible states \Leftrightarrow random variables are entries in a *transition matrix*.
 - The transition matrix is used to forecast future states.

- Point multiplication algorithm \Leftrightarrow Markov process.
- Markov process:
 - The next state (event) is only dependent on the present state,
 - but is independent of the state before the present state.
 - Transitions are determined by a random variable (probability is known or has to be estimated).
 - Several possible states \Leftrightarrow random variables are entries in a *transition matrix*.
 - The transition matrix is used to forecast future states.
 - A steady state exists for a large class of Markov processes!

Analysis of a double-add-and-subtract algorithm. Details are in the paper.

Figure 2: Transition graph of the algorithm.

Analysis of a double-add-and-subtract algorithm. Details are in the paper.

Figure 2: Transition graph of the algorithm.

$$M = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

Figure 3: Transition matrix. The steady state vector is $(\frac{1}{2}, \frac{1}{4}, \frac{1}{4})$

The Attack

1. **Precomputation phase:** Find the Markov model. Calculate the conditional probabilities for a lot of combinations of realizations of X and Y.

- 1. **Precomputation phase:** Find the Markov model. Calculate the conditional probabilities for a lot of combinations of realizations of X and Y.
- 2. *Data collection phase:* Deduce the sequence of EC-PA and EC-PD operations.

- 1. **Precomputation phase:** Find the Markov model. Calculate the conditional probabilities for a lot of combinations of realizations of X and Y.
- 2. *Data collection phase:* Deduce the sequence of EC-PA and EC-PD operations.
- 3. **Data analysis phase:** Split this sequence into a number of sub-sequences. Ensure a valid partitioning!

- 1. **Precomputation phase:** Find the Markov model. Calculate the conditional probabilities for a lot of combinations of realizations of X and Y.
- 2. *Data collection phase:* Deduce the sequence of EC-PA and EC-PD operations.
- 3. **Data analysis phase:** Split this sequence into a number of sub-sequences. Ensure a valid partitioning!
- 4. Key testing phase: Check all possible keys by the known ciphertext.

A concrete example-Precomputation Phase

A concrete example-Precomputation Phase

Table 1: Non-zero conditional probabilities. In this table we use an abbreviated notation, i.e. we write p(000|DDD) instead of p(Y = 000|X = DDD). We use the LSB first representation.

p(000 DDD) =	1/2	p(01 DAD) =	1/2	p(11 ADAD) =	1/2
p(100 DDD) =	1/4	p(10 DAD) =	1/4	p(10 ADAD) =	1/4
p(111 DDD) =	1/4	p(11 DAD) =	1/4	p(01 ADAD) =	1/4
p(001 DDAD) =	1/2	p(000 ADDD) =	1/4	p(110 ADADAD) =	1/2
(101 DD(D))	- 1 -				
p(101 DDAD) =	1/4	p(100 ADDD) =	1/2	$\mid p(101 ADADAD) =$	1/4

Institute for Applied Information Processing and Communications

A concrete example-Data Analysis Phase

A concrete example-Data Analysis Phase

Table 2: Example : $k = 11110111100010001$, LSB first representation									
ADADDDADADDDDADADADDDDDDDD									
ADAD	DDAD	ADAD	DDAD	ADAD	ADDD	ADDD	DAD		
11	001	11	001	11	100	100	01		
10	101	10	101	10	000	000	10		
01	110	01	110	01	111	111	11		

- Worst Case . . . $3^{3n/2l}$ keys to test.
- Average Case . . . $2^{3n/2l}$ keys to test. Set l = 16.
- Average case for a 163-bit curve $\Rightarrow 2^{15.28}$ keys to test!

Institute for Applied Information Processing and Communications

NAF-Method and Randomized Algorithms

NAF-Method and Randomized Algorithms

• **NAF-method:** $2^{n/3}$ possible keys need to be searched through. Would take approx. 2^{17} years with a single and not even optimized device.

NAF-Method and Randomized Algorithms

• **NAF-method:** $2^{n/3}$ possible keys need to be searched through. Would take approx. 2^{17} years with a single and not even optimized device.

• Randomized Algorithms:

- The attack is not better than on the NAF-method.
- The randomization does increase some of the conditional probabilities,
- but, the number of combinations of possible bit-patterns and sub-sequences increases rapidly,
- so that they are more resistant than the other algorithms.

Conclusions

- We presented a new and more efficient simple power-analysis attack on EC-SPM
- We used Markov models to calculate conditional probabilities for sequences of bits and sequences of elliptic curve operations.
- We could enhance attacks on double-add-and subtract algorithms (that only use a 3-digit encoding)
- The security margin of such algorithms when using 163-bit curves is rather small!

THE END

Thank you for your Attention!

Questions?

Elisabeth.Oswald@{iaik.at,esat.kuleuven.ac.be} http://www.iaik.at http://www.esat.kuleuven.ac.be/cosic

Institute for Applied Information Processing and Communications