

Some Security Aspects of the MIST Randomized Exponentiation Algorithm

Colin D. Walter

 $C \cdot O \cdot M \cdot O \cdot D \cdot O$ RESEARCH LAB

www.comodo.net (Bradford, UK) colin.walter@comodo.net

Power Analysis Attacks

- With no counter-measures and the binary expⁿ alg^m, averaging power traces at the same instants during *several* exp^{ns} enables one to differentiate squares and multiplies and hence deduce the exponent bits (Kocher).
- Averaging power traces over individual digit-by-digit products in a *single* expⁿ enables one to differentiate multiplicands in *m*-ary expⁿ and hence deduce the exponent (CHES 2001).
- Smartcards have limited scope for including expensive, tamper-resistant, hardware measures.
- Good software counter-measures are required: new algorithms as well as modifying arguments e.g. D to $D+r\phi(N)$.

The MIST Algorithm

m-ary Expⁿ (*Reversed*)

{ To compute: $P = C^D$ } Q \leftarrow C ; P \leftarrow 1 ; While D > 0 do Begin

 $d \leftarrow D \mod m;$ If $d \neq 0$ then $P \leftarrow Q^{d} \times P;$ $Q \leftarrow Q^{m};$ $D \leftarrow D \operatorname{div} m;$ { Invariant: $C^{D.Init} = Q^{D} \times P$ } End

The MIST Algorithm

Colin D. Walter, **Comodo Research Lab**, Bradford Next Generation Digital Security Solutions

CHES 2002 3/19

The MIST Expⁿ Algorithm

{ *To compute:* $P = C^D$ } $Q \leftarrow C$; $P \leftarrow 1$; While D > 0 do Begin Choose a random base m, e.g. from $\{2,3,5\}$; $d \leftarrow D \mod m$; If $d \neq 0$ then $P \leftarrow Q^d \times P$: $\mathbf{Q} \leftarrow \mathbf{Q}^{\mathrm{m}}$; $D \leftarrow D \operatorname{div} m$; { Invariant: $C^{D.Init} = Q^D \times P$ } End

The MIST Algorithm

Colin D. Walter, **Comodo Research Lab**, Bradford Next Generation Digital Security Solutions

CHES 2002 4/19

Randomary Exponentiation

The main computational part of the loop is: If $d \neq 0$ then $P \leftarrow Q^d \times P$; $Q \leftarrow Q^m$

• To provide the required efficiency, a set of possible values for *m* are chosen so that an efficient addition chain for *m* contains *d*, e.g.

1+1=2, 2+1=3, 2+3=5 is an addition chain for base m=5 suitable for digits d = 0, 1, 2 or 3.

• Comparable to the 4-ary method regarding time complexity.

Running Example

Fix the base set = {2, 3, 5}*. Consider* **D** = 235

D	<i>m</i> , <i>d</i>	Q (before)	Q^d	Q^m	P (after)
235	3, 1	<i>C</i> ¹	<i>C</i> ¹	<i>C</i> ³	<i>C</i> ¹
78	2, 0	<i>C</i> ³	1	<i>C</i> ⁶	<i>C</i> ¹
39	5, 4	<i>C</i> ⁶	<i>C</i> ²⁴	C ³⁰	$C^1 \times C^{24} = C^{25}$
7	2, 1	C ³⁰	<i>C</i> ³⁰	C ⁶⁰	$C^{25} \times C^{30} = C^{55}$
3	3, 0	C 60	1	C ¹⁸⁰	C ⁵⁵
1	2, 1	C 180	C^{180}	C ³⁶⁰	$C^{55} \times C^{180} = C^{235}$

The MIST Algorithm

Colin D. Walter, **Comodo Research Lab**, Bradford Next Generation Digital Security Solutions

CHES 2002 6/19

Choice of Base Set

- Security: Bases must be chosen so that sequences of squares & multiplies or op^d sharing do not reveal m.
- Efficiency:
 - Bases *m* must be chosen so that raising to the power
 m is (time) efficient enough.
 - Space is required to store addition chains.
 - As few *registers* as possible should be used for the exponentiation.
- *One Solution*: Take the set of bases {2,3,5}.

Choice of Base

```
Example algorithm (see CT-RSA 2002 paper):
m \leftarrow 0;
If Random(8) < 7 then
     If (D \mod 2) = 0 then m \leftarrow 2 else
     If (D \mod 5) = 0 then m \leftarrow 5 else
     If (D \mod 3) = 0 then m \leftarrow 3;
If m = 0 then
Begin
     p \leftarrow \text{Random}(8);
     If p < 6 then m \leftarrow 2 else
     If p < 7 then m \leftarrow 5 else
     m \leftarrow 3
End
```

The MIST Algorithm

Colin D. Walter, **Comodo Research Lab**, Bradford Next Generation Digital Security Solutions

CHES 2002 8/19

Probability of (*m*,*d*)

• Define probabilities:

$$p_i = \operatorname{prob}(D \equiv i \mod 30)$$

 $p_{m|i} = \operatorname{prob}(\operatorname{choosing} m \operatorname{given} D \equiv i \mod 30)$

• Then:

$$p_{m} = \sum_{i \mod 30} p_{i} p_{m|i}$$
 is prob of base m
$$p_{m,d} = \sum_{i \equiv d \mod 30} p_{i} p_{m|i}$$
 is prob of pair (m,d)

• For the base selection process above:

$$p_2 = 0.629$$
 $p_3 = 0.228$ $p_5 = 0.142$

Colin D. Walter, **Comodo Research Lab**, Bradford Next Generation Digital Security Solutions

CHES 2002 9/19

Addition Sub-Chains

- Let (*ijk*) mean: multiply contents at addresses *i* and *j* and write result to address *k*.
- Use 1 for location of Q, 2 for temporary register, 3 for P:

for $(m,d) = (2,0)$
for $(m,d) = (2,1)$
for $(m,d) = (3,0)$
for $(m,d) = (3,1)$
for $(m,d) = (3,2)$
for $(m,d) = (5,0)$
for $(m,d) = (5,1)$
for $(m,d) = (5,2)$
for $(m,d) = (5,3)$
for $(m,d) = (5,4)$

CHES 2002 10/19

S&M Sequences

- Assume an attacker can distinguish **Squares** and **Multiplies** from a *single* exponentiation (e.g. from Hamming weights of arguments deduced from power variation on bus.)
- A **division chain** is the list of pairs (*m*,*d*) used in an expⁿ scheme. It determines the *addition chain* to be used, and hence the sequence of *squares* and *multiplies* which occur:

• Base sub-chain boundaries are deduced from occurrences of *S* except for ambiguity between (5,4) and (2,0)(3,*x*) or (2,0)(5,0).

Running Example

D	(m,d)	S&M subchain	Interpretations
235	(3,1)	S(M)M	(3,1), (3,2), (5,0)
78	(2,0)	S	(2,0)
39	(5,4)	SSMM	(5,4), (2,0)(3,1),
			(2,0)(3,2), (2,0)(5,0)
7	(2,1)	SM	(2,1), (3,0)
3	(3,0)	SM	(2,1), (3,0)
1	(2,1)	(<i>S</i>) <i>M</i>	(2,1)

Result: *SM.S.SSMM.SM.SM.M* with $1^{1}2^{2}3^{1}4^{1} = 48$ choices. (Modifications for end conditions: e.g. the initial *M* and final *S* are superfluous.)

The MIST Algorithm

Colin D. Walter, **Comodo Research Lab**, Bradford Next Generation Digital Security Solutions

CHES 2002 12/19

Exponent Choices

- There is/are:
 - 1 way to interpret S
 - 2 ways to interpret SM
 - 3 ways to interpret SMM with preceding M
 - 4 ways to interpret SMM with preceding S
 - 4 ways to interpret SMMM
- The probabilities of the sub-chains can be calculated: $p_S = \text{prob}(S) = p_{2,0}$; $p_{SM} = p_{2,1} + p_{3,0}$; $p_{SMM} = \text{etc.}$
- So average number of choices to interpret a sub-chain is 1^p's 2^p'sM 3^p'MSMM 4^p'SSMM 4^p'SMMM ≈ 1.7079 where ' is the modification due to parsing SSMM into S.SMM always.

S&M Theorem

- There are on average $0.766 \log_2 D$ occurrences of *S* per addition chain, so $1.7079^{0.766 \log_2 D} = D^{0.5916}$ exponents which can generate the same S&M sequence.
- **THEOREM :** The search space for exponents with the same S&M sequence as D has size approx $D^{3/5}$.
- For 4-ary expⁿ, it is *much* easier to average traces, easier to be certain of the S&M sequence, and the search space is only $D^{7/18}$ which is smaller.
- Both are computationally infeasible searches.

Colin D. Walter, **Comodo Research Lab**, Bradford Next Generation Digital Security Solutions

CHES 2002 14/19

Operand Re-Use

- From its location, address, power use in multⁿ or Hamming weight, it may be possible to identify re-use of operands. Assume we know when operands are equal, but nothing more.
 - since only squares have equal operands, this means the S&M sequence can be recovered.
 - for classical *m*-ary & sliding windows expⁿ, there is a fixed pre-computed multiplicand for each exp^t digit value, so the secret exponent can be reconstructed uniquely.
- MIST operand sharing leaves ambiguities:
 - (2,1) and (3,0) have the same operand sharing pattern and both are common: $p_{SM} = 0.458$.

The MIST Algorithm

Colin D. Walter, **Comodo Research Lab**, Bradford Next Generation Digital Security Solutions

CHES 2002 15/19

Running Example

- D (m,d) Op Sharing Interpretations
- 235 (3,1) (3,1)
- 78 (2,0) (2,0)
- 39 (5,4) (5,4)
- 7 (2,1) (2,1), (3,0)
- 3 (3,0) (2,1), (3,0)
- 1 (2,1) (2,1)

Result: $2^2 = 4$ choices.

(Modifications for end conditions:e.g. the most significant digit *d* is non-zero.)

Colin D. Walter, **Comodo Research Lab**, Bradford Next Generation Digital Security Solutions

CHES 2002 16/19

$C \cdot O \cdot M \cdot O \cdot D \cdot O$ RESEARCH LAB

Operand Re-Use Theorem

• With similar working to the S&M case:

THEOREM : For **MIST**, the search space for exponents with the same operand sharing sequence as **D** has size approx **D**^{1/3}.

- The search space for *m*-ary exp^n has size D^0 .
- There are several necessary boring technicalities to ensure mathematical rigour skip sections 4 and 5 in the paper!

The MIST Algorithm

Colin D. Walter, **Comodo Research Lab**, Bradford Next Generation Digital Security Solutions

CHES 2002 17/19

Difficulties?

- The above requires correct identification of op^d sharing first (operands are never used more than 3 times)
- Mistakes are not self-correcting in an obvious way; only a few errors can vastly increase the search space.
- There is no known way to combine results from other exp^{ns}, especially if exponent blinding is applied.
- Always selecting zero digits vastly decreases the search.
- Small public exponent, no exponent blinding and known RSA modulus provide half the bits, reducing the search space to $D^{1/6}$.

Conclusion

- "Random-ary exponentiation" a novel expⁿ alg^m suitable for RSA on smartcard (no inverses need to be computed).
- Time & Space are comparable to 4-ary expⁿ.
- Random choices & little operand re-use make the usual averaging for DPA much more restricted.
- **MIST** is much stronger against power analysis than standard expⁿ algorithms.

The MIST Algorithm

Colin D. Walter, **Comodo Research Lab**, Bradford Next Generation Digital Security Solutions

CHES 2002 19/19