1

DPA Leakage Models for CMOS Logic Circuits

Daisuke Suzuki

Minoru Saeki

Mitsubishi Electric Corporation,

Information Technology R&D Center

Tetsuya Ichikawa

Mitsubishi Electric Engineering Company Limited

Outline

- Summary
- Motivation and result
- Our New Leakage Models for CMOS Circuit
- Static model and dynamic model against "standard DPA"
- Leakage Models against "Enhanced DPAs"
- We adapt our leakage models to "enhanced DPAs"
- And we discuss effectiveness of these analysis from the view point of our models

Evaluation and Experimental Results

- We demonstrate the weakness of previously know hardware countermeasures by using our models
- These results fully agree with our implementation results on FPGA

Conclusion

Summary (1/3)

Why does DPA leakage occur?

- It is important for constructing the countermeasure against DPA to grasp the reason accurately
- Modeling the DPA leakage is an effective solution to this problem
- Our leakage models based on the transition probability for each gate (this presentation)
 - We can evaluate DPA leakage in upstream design processes
 We can directly analyze DPA leakage from logic information in CMOS circuits

We adapt our models to "Second-Order DPAs" for CMOS logic circuits and evaluate the effectiveness of these techniques

Messerges's Second-Order DPA (M-2DPA)[12]

✓ Our secure condition against each analysis shows that
 M-2DPA is essentially equivalent to the standard (Kocher's) DPA

Waddle's Second-order DPA (W-2DPA)[13]

- ✓ W-2DPA can detect the bias of the distribution of the transition probability
- ✓ All known masked CMOS logics are ineffectual against W-2DPA

Summary (3/3)

- We evaluate previously known countermeasures by using our leakage models.
 - These results fully agree with our implementation results on FPGA

	Standard DPA (M-2DPA)	W-2DPA
WDDL[6]	Δ	Δ
Masked-AND[7]	Δ	×
MAND [18]	Δ	×

X: leaks on the static model Δ : leaks on the dynamic model

Our New Leakage Models for CMOS Circuit (1/6)

Related works

MITSUBISHI

Analog model *

difficult to evaluate in upstream design prosses

S. Chari, C.S. Jutla, J.R. Rao and P. Rohatgi,

``Towards Sound Approaches to Counteract Power Analysis Attacks," Crypto'99

R. Bevan and E. Knudsen,

``Ways to Enhance Differential Power Analysis," ICISC 2002

Based on the Hamming weight insufficient

C. Clavier, J.-S. Coron and N. Dabbous, ``Differential Power Analysis in the Presence of Hardware Countermeasures," CHES 2000

Our New Leakage Models for CMOS Circuit (2/6)

Power consumption in CMOS circuits[16]

$$\boldsymbol{P}_{\text{total}} = \boldsymbol{p}_{\text{t}} \cdot \boldsymbol{C}_{\text{L}} \cdot \boldsymbol{V}_{\text{dd}}^2 \cdot \boldsymbol{f}_{\text{clk}} + \boldsymbol{p}_{\text{t}} \cdot \boldsymbol{I}_{\text{sc}} \cdot \boldsymbol{V}_{\text{dd}} \cdot \boldsymbol{f}_{\text{clk}} + \boldsymbol{I}_{\text{leakage}} \cdot \boldsymbol{V}_{\text{dd}}$$

charge/discharge

direct-path short circuit current

leakage current

- *P*t : transition probability of signals
 - : loading capacitance
- V_{dd} : supply voltage

C₁

I_{sc}

- f_{clk} : clock frequency
 - : direct-path short circuit current

leakage : leakage current (of course this "leakage" is not "DPA leakage")

Our New Leakage Models for CMOS Circuit (3/6)

Power consumption in CMOS circuits[16]

$$P_{\text{total}} = p_{\text{t}} \cdot C_{\text{L}} \cdot V_{\text{dd}} \cdot f_{\text{clk}} + p_{\text{t}} \cdot I_{\text{sc}} \cdot V_{\text{dd}} \cdot f_{\text{clk}} + I_{\text{leakage}} \cdot V_{\text{dd}}$$

are determined when the circuit is constructed (don't depend on the intermediate value)

is dependent on the intermediate value (including key data)

The source of the DPA leakage is <u>a bias of the transition probability for each gate</u>

Our New Leakage Models for CMOS Circuit (4/6)

Our models to compute "<u>transition probability</u>"

Static Model

An ideal circuit without signal propagation delay

We evaluate a Boolean function at the output of each gate

Dynamic Model

- A real circuit wherein a transient hazard is generated due to the delay
- We evaluate a Boolean function under a single input change assumption

Our New Leakage Models for CMOS Circuit (5/6)

Our leakge models based on the transition probability against standard DPA

Definition 1. (Static Leakage) : N^{stc}_{diff}

$$N_{\text{diff}}^{\text{stc}} = N_{\alpha=1}^{\text{stc}} - N_{\alpha=0}^{\text{stc}} = \sum_{i=1}^{k} (p_{\alpha=1,(i)}^{\text{stc}} - p_{\alpha=0,(i)}^{\text{stc}})$$

- **α** : signal for DPA grouping (*selection bit*)
- **N** : expected transition counts in one clock cycle

<u>Secure condition</u> : $N_{diff}^{stc} = 0$

Our New Leakage Models for CMOS Circuit (6/6)

Our leakge models based on the transition probability against standard DPA

Definition 2. (Dynamic Leakage) : N^{dyc}_{diff}

$$N_{\text{diff}}^{\text{dyc}} = N_{lpha=1}^{\text{dyc}} - N_{lpha=0}^{\text{dyc}} = \sum_{i=1}^{k} \sum_{e \in E(i)} \left(p_{lpha=1,(i)}^{\text{dyc}}(e) - p_{lpha=0,(i)}^{\text{dyc}}(e)
ight)$$

- *E* : set of the events that single input change occurs
- $p_{\alpha,(i)}^{dyc}(e)$: transition probability of the *i* th gate in the dynamic model corresponding to the event *e*

Secure condition :
$$N_{diff}^{dyc} = 0$$

Leakage Models against "Enhanced DPAs" (1/5)

- We consider the effectiveness of second-order DPAs from the viewpoint of our models
 - Messerges's Second-Order DPA (M-2DPA)[12]
 - The attacker analyzes two time points in power trances
 - > Waddle's second-order DPA (W-2DPA)[13]
 - The attacker uses squaring power traces

What is a secure condition against each analysis on CMOS logic circuit?

Leakage Models against "Enhanced DPAs" (2/5)

- Leakage in M-2DPA on CMOS logic circuits
 - We analyze the correlation of the signal transition of two points *t*,*t*'

Definition 3.(Leakage in M-2DPA): N^{2nd}_{diff}

$$N_{
m diff}^{
m 2nd} = (N_{lpha=1}(t') - N_{lpha=1}(t)) - (N_{lpha=0}(t') - N_{lpha=0}(t))$$

Leakage Models against "Enhanced DPAs" (3/5)

Secure condition : Standard DPA vs M-2DPA

$$N_{\rm diff}=0$$
 (in any point $N_{lpha=1}=N_{lpha=0}$) $\Rightarrow N_{
m diff}^{2nd}=0$

$$N_{\text{diff}} \neq 0$$
 (in some point $N_{\alpha=1} \neq N_{\alpha=0}$)

The circuit wherein equal leakage occurs $\Rightarrow N_{diff}^{2nd} \neq 0$ at any point of time is not realistic

$$N_{
m diff} = \mathbf{0} \Leftrightarrow N_{
m diff}^{
m 2nd} = \mathbf{0}$$

 Secure condition of M-2DPA is equivalent to that of standard DPA in real circuit

Leakage Models against "Enhanced DPAs" (4/5)

Leakage in W-2DPA on CMOS logic circuits

We use squaring power traces

Definition 4. (Leakage in W-2DPA): V_{diff} $V(t) = \sum_{s \in S(t)} (s^2 \cdot p_s(t))$ $V_{\text{diff}} = V_{\alpha=1}(t) - V_{\alpha=0}(t)$

- **S(t)** : set of possible transition counts
- $p_s(t)$: probability that the transition occurs at s gates

Leakage Models against "Enhanced DPAs" (5/5)

Secure condition : Standard DPA vs W-2DPA

- Secure condition in W-2DPA is NOT equivalent to that of standard DPA
- We can detect the bias of the distribution of the transition probability
- In particular, if we assume the static model, masked CMOS logics are secure against standard DPA but not secure against W-2DPA

$$(N_{diff}^{stc} = 0 \text{ but } V_{diff}^{stc} \neq 0)$$

Evaluation Results of Previously Known Countermeasures (1/5)

- We analyze previously known hardware countermeasures by using our models
 - Our leakage models
 - Standard DPA
 - 🔶 W-2DPA

We evaluate AND-operation of each countermeasures
 WDDL-AND gate[6] (Complementary logics)
 Maked-AND[7] (Masked CMOS logics)
 MAND[11] (Masked CMOS logics)

Evaluation Results of Previously Known Countermeasures (2/5)

Result of WDDL in our models

WDDL is secure against standard DPA in the static model (*N*^{stc}_{diff} = 0)

If all input signals reach each complementary gate simultaneously, $N_{diff}^{dyc} = 0$ and $V_{diff}^{dyc} = 0$

else, $N_{diff}^{dyc} \neq 0$ and $V_{diff}^{dyc} \neq 0$ because of the difference of response speed on AND/OR-gate

MITSUBISHI

Result of WDDL in our models

Note the sign of the leakage!

$N_{\rm diff}^{\rm dyc} = -1 < 0$ $N_{\rm diff}^{\rm dyc} = +1 > 0$											
transition probability of the WDDL-AND gate											
selection bit	CMOS gate	prcl		prch = 0							
α		<i>e</i> (Δ <i>a</i>)	e(Δ	2)	<i>e</i> (Δ <i>a</i>)	e(Δb)					
a = 1	AND	0	1/2		1/2	0					
	OR	0	1/2		0	1/2					
a = 0	AND	0	0		0	0					
	OR		0		1/2	1/2					
b = 1	AND	0	1/2		1/2	0					
	OR	1/2	0		1/2	0					
b = 0	AND	0	0		0	0					
	OR	1/2	1/2)	0	1					

prch : precharge signal in WDDL 19

Evaluation Results of Previously Known Countermeasures (4/5)

Results of Masked-AND and MAND

Both are secure against standard DPA in the static model ($N_{diff}^{stc} = 0$)

Note the sign of the leakage!

V_{diff} ≠ 0 , because the distribution of the transition probability is biased even in the static model MITSUBISHI

Results of Masked-AND and MAND

$V_{diff} =$	= -5/8 < 0)		$V_{\rm diff} = -1$	/ 4 < 0	
transition distribution of Masked-AND			transition dis	tribution of th	e MAND	
selection bit	transition counts	event probability		selection bit	transition counts	event probability
α	s	p _s		α	S	<i>p</i> _s
a = 1	0 1 2	5/32 3/8 5/16		a = 1	0 1 2	1/4 1/2 1/4
	3 4 0	1/8 1/32 19/64		a = 0	0 1 2	3/8 1/4 3/8
a = 0	1 2 3 4	3/16 11/32 1/16 7/64	N	ote the sign	of the lea	kage!

Changes for the Better

Experimental Results on FPGA (1/6)

Experimental Results on FPGA (2/6)

To verify the validity of our models, we also implement these countermeasures on FPGA and evaluate actual power traces

Implementations on FPGA

 XCV1000-6-BG560C FPGA of Xilinx Inc (Virtex 1000)
 We implement a circuit of consisting AND-operation applying each countermeasure using automatic place-and-route tools

Experimental Results on FPGA (3/6)

Standard DPA trace on FPGA

Experimental Results on FPGA (4/6)

Standard DPA trace on FPGA

Magnified view of the WDDL

Experimental Results on FPGA (5/6)

W-2DPA trace on FPGA

Experimental Results on FPGA (6/6)

W-2DPA trace on FPGA

Magnified view of the WDDL

Evaluation and Experimental Results

Summary of our results

- Our experimental results on FPGA fully agree with considerations based on our leakage models
- The approach by complementary logics (WDDL) is very effective although the problem of the signal delay still remains
- It is difficult to resist various power analysis by the approach of data masking in general CMOS gates

In [11], we proposed a construction of a special CMOS gate (RSL:Random Switching Logic), which is improved at the transistor level and satisfies secure condition.

[11] Suzuki, M.Saeki and T.Ichikawa, ``Random Switching Logic: A Countermeasure against DPA based on Transition Probability," Cryptology ePrint Archive, Report 2004/346, 2004.

Standard DPA trace on FPGA

W-2DPA trace on FPGA

Evaluation system by logic simulation (DES-circuit)[14]

[20] T.Ichikawa, D. Suzuki and M. Saeki, ``An Attack on Cryptographic Hardware Design with Masking Method,"ISEC2004-58, IEICE, July 2004 (in Japanese)

32

Standard DPA trances of AES circuit with masked-AND operation[11][20]

33

Conclusions

We proposed new DPA leakage models

- These models are based on the transition probability for each gate
- We also evaluated the effectiveness of Messerges's second-order DPA and Waddle's second-order DPA from the viewpoint of our models
 - M-2DPA is essentially equivalent to the standard DPA
 - W-2DPA can detect the bias of the distribution of the transition probability in CMOS logic circuits
- We analyzed previously known countermeasures by

usign our models

- These results fully agree with our implementation results on FPGA
- We point out the weakness of previously known countermeasures

Changes for the Better

Thanks for Listening