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First Order Side Channel Analysis and Masking

Side Channel Leakage

Measurable observables (power consumption, EM emanation)
depend on (key-dependent) internal states of a cryptographic
implementation.

First Order Side Channel Analysis

First-order side channel analysis applies statistical tests using

measurement data and

one key-dependent internal state of the cryptographic
implementation.

Masking

Masking hides key-dependent internal states by adding random
numbers. First-order side channel analysis can be prevented.
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Higher-Order Side Channel Analysis and Masking

Higher-Order Side Channel Analysis

Higher-order side channel analysis applies statistical tests using

measurement data and

multiple internal states of a cryptographic implementation.

Higher-Order Side Channel Analysis and Masking

Higher-order side channel analysis is essential if

the cryptographic implementation applies an effective masking
scheme.

Example

Second-order side channel analysis considers two internal states
(e.g., the mask and the masked key-dependent internal state) and
can defeat first-order masking.
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This Contribution

Previous Contributions

Univariate statistics (First-Order DPA, Second-Order DPA,...)

Multivariate statistics (Templates, Stochastic Methods,...)
with complete knowledge of the adversary at profiling.

This Contribution

Multivariate statistics with incomplete knowledge of the
adversary at profiling, i.e., the adversary does not know
random numbers used for masking.

Use of Gaussian Mixture Models for estimating multivariate
probability density functions (p.d.f.s) for each key dependency
at profiling.
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Our Model: Masked Implementation

Concrete Settings

First order boolean masking scheme: data x ∈ {0, 1}d , key
k ∈ {0, 1}d , and mask y ∈ {0, 1}d

Two internal states for side channel analysis:

Differential analysis: y and y ⊕ k ⊕ x

m-dimensional side channel observable
~I (x , k , y) = (I1, . . . , Im)T with ~i(x , k , y) = (i1, . . . , im)T

representing one measurement vector.

For each pair (x , k , y) ~z :=~i(x , k , y) ∈ R
m is distributed

according to an m-variate Gaussian density

N (~z , ~µ,Σ) =
1

√

(2π)m|Σ|
exp

[

−
1

2
(~z − ~µ)TΣ−1(~z − ~µ)

]
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Our Model: Side Channel Adversary A

Profiling Phase

Training Device
Input:

N vectorial measurement
samples ~i(x , k , y)

Known data x ∈ {0, 1}d

Known key k ∈ {0, 1}d

Output:

Multivariate p.d.f. f (x ,k) of
the side channel leakage for
each pair of (x , k)

Key Recovery Phase

Target Device
Input:

N◦ vectorial measurement
samples ~i(x , k◦, y)

Known data x ∈ {0, 1}d

Multivariate p.d.f. f (x ,k) of
the side channel leakage for
each pair of (x , k)

Output:

Key guess k∗ ∈ {0, 1}d

Adversary Success

Adversary A is successful if k∗ = k◦.

Gaussian Mixture Models for Higher-Order Side Channel Analysis Kerstin Lemke-Rust and Christof Paar



Experimental Mixture of p.d.f.s
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Gaussian Mixture Models for Profiling

Mixture p.d.f.s and Component p.d.f.s

For each (x , k) A observes a mixture p.d.f.

f (~z , θ(x ,k)) =

2d−1
∑

j=0

α
(x ,k)
j N (~z , ~µ

(x ,k)
j ,Σ

(x ,k)
j ) (1)

that consists of 2d m-variate Gaussian component p.d.f.s

N (~z , ~µ
(x ,k)
j ,Σ

(x ,k)
j ) for each mask j .

The α
(x ,k)
j satisfy

α
(x ,k)
j ≥ 0, j = 0, . . . , 2d − 1 and

2d−1
∑

j=0

α
(x ,k)
j = 1.
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Problem Statement

Problem statement for A at profiling

Given a mixture f (~z , θ(x ,k)) in (1) estimate the parameters

θ(x ,k) =
(

α
(x ,k)
0 , ~µ

(x ,k)
0 ,Σ

(x ,k)
0 , . . . , α

(x ,k)

2d−1
, ~µ

(x ,k)

2d−1
,Σ

(x ,k)

2d−1

)

.

Side information:

The number of component p.d.f.s is known to be 2d .

The component p.d.f.s are uniformly distributed in an
effective masking scheme:

α
(x ,k)
j ≈ 2−d

For key recovery, the labels of the component p.d.f.s (i.e., the
masks) are not needed to be identified.
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Variants for Parameter Estimation

Variants for Parameter Estimation

Table: Number of free parameters in the Gaussian mixture model.

Variant α
(x,k)
j ~µ

(x,k)
j Σ

(x,k)
j or Σ(x,k) Total

1 × 2dm × 2dm

2 2d
− 1 2dm × 2d (1 + m) − 1

3 2d
− 1 2dm (m2 + m)/2 2d (1 + m) + (m + m2)/2 − 1

4 2d
− 1 2dm 2d (m2 + m)/2 2d (1 + 3m/2 + m2/2) − 1

Example

If d = 1 and m = 2 the number of free parameters is 4 for
Variant 1, 5 for Variant 2, 8 for Variant 3, and 11 for Variant 4.
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Expectation-Maximization (EM) Algorithm in Profiling
Phase

Expectation-Maximization (EM) Algorithm

Maximizes the likelihood function

f (~z1, θ
(x ,k)) · f (~z2, θ

(x ,k)) · . . . · f (~zN(x,k), θ
(x ,k)). (2)

Number of samples for each (x , k): N (x ,k) ≈ N
22d

Iterative algorithm that requires initial values for the set of

parameters α
(x ,k)
j , ~µ

(x ,k)
j and Σ

(x ,k)
j .

After each iteration (shown on next slide), compute (2) and
check for convergence.

Repeat the EM Algorithm with other (e.g., randomized) initial
values.
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Expectation-Maximization (EM) Algorithm for Variant 4

Expectation Step (E-Step):

αjn :=
α̂

(x ,k)
j N (~zn, ~̂µ

(x ,k)
j , Σ̂

(x ,k)
j )

∑2d−1
i=0 α̂

(x ,k)
i N (~zn, ~̂µ

(x ,k)
i , Σ̂

(x ,k)
i )

Maximization Step (M-Step):

α̂
(x ,k)
j =

1

N(x ,k)

N(x,k)
∑

n=1

αjn , ~̂µ
(x ,k)
j =

1
∑N(x,k)

n=1 αjn

N(x,k)
∑

n=1

αjn~zn

Σ̂
(x ,k)
j =

1
∑N(x,k)

n=1 αjn

N(x,k)
∑

n=1

αjn

(

~zn − ~̂µ
(x ,k)
j

)(

~zn − ~̂µ
(x ,k)
j

)T

See paper for the details of the 3 variants.
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Key Recovery Phase

Decision Strategy

Adversary A computes

Lk :=

N◦

∑

i=1

ln f (~zi |k , xi ) =

N◦

∑

i=1

ln





2d−1
∑

j=0

α
(xi ,k)
j N (~zi , ~µ

(xi ,k)
j ,Σ

(xi ,k)
j )





for each of the 2d key hypotheses k using known xi ∈ {0, 1}d and
decides in favour of that key hypothesis k ∗ that leads to the
maximum likelihood:

k∗ := arg max
k

Lk .
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Experimental Case Study

Settings

Power consumption measurements of an 8-bit microprocessor
AT90S8515 running a boolean masking scheme.

(d = 1, m = 2) setting: y ∈ {0, 1} and y ⊕ k ⊕ x ∈ {0, 1}.

Assumption: two p.d.f.s f (x⊕k) are sufficient for the
characterization problem (instead of four p.d.f.s f (x ,k)).

Comparison

EM Estimates vs. Templates (Adversary with complete
knowledge at profiling).
EM Estimates vs. Second-Order DPA (Adversary without
profiling stage, as proposed by Messerges).
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Empirical component p.d.f.s (Supervised Learning)

Left plot: component p.d.f.s for (x ⊕ k = 0)
Right plot: component p.d.f.s for (x ⊕ k = 1)
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Empirical mixture p.d.f.s (Unsupervised Learning)

Left plot: mixed p.d.f. for (x ⊕ k = 0)
Right plot: mixed p.d.f. for (x ⊕ k = 1)
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Estimated Parameters for the Gaussian component p.d.f.s

x ⊕ k y µ1 µ2 σ11 σ22 σ12 = σ21

Templates

0 0 -0.343609 -0.264896 0.890693 0.929354 0.027368

0 1 0.363384 0.258210 0.849087 0.890358 0.046014

1 0 -0.353654 0.255177 0.885363 0.943963 0.042504

1 1 0.349743 -0.267222 0.877618 0.965020 0.062675

EM Algorithm, Variant 1

x ⊕ k j µ1 µ2 σ11 σ22 σ12 = σ21

0 0 -0.228378 -0.222345 1.0 1.0 0.0

0 1 0.252548 0.218852 1.0 1.0 0.0

1 0 0.152021 -0.158530 1.0 1.0 0.0

1 1 -0.173202 0.166899 1.0 1.0 0.0

EM Algorithm, Variant 4

x ⊕ k j µ1 µ2 σ11 σ22 σ12 = σ21

0 0 0.625019 -0.019519 0.636527 0.926563 0.143675

0 1 -0.520327 0.013980 0.695991 1.022322 0.134543

1 0 0.610178 -0.093003 0.610554 0.937405 -0.025781

1 1 -0.549292 0.088531 0.695000 1.024076 0.006803
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Experimental Success Rates at Key Recovery

Templates EM Algorithm Second-Order DPA
N◦ Variant 4 Variant 1

10 58.17 % 58.49 % 58.77 % 54.84 %

20 62.82 % 62.26 % 61.63 % 56.74 %

50 68.43 % 68.26 % 67.90 % 61.67 %

100 75.33 % 74.52 % 74.59 % 67.46 %

200 83.85 % 83.13 % 81.22 % 73.93 %

400 91.59 % 91.05 % 89.52 % 81.89 %

1000 98.88 % 98.68 % 98.09 % 92.77 %

2000 99.94 % 99.95 % 99.91 % 98.44 %
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Further Directions for Higher-Order Analysis

Further Directions

1 Increase of m (number of instants):

should clearly improve success rates for key recovery.

2 Increase of d (number of bits):
results in two drawbacks:

Number of free parameters increases exponentially.
Number of measurements that are available for estimation
decreases exponentially.

The benefit of an improved signal-to-noise ratio (due to more
chosen bits) may be thwarted.

3 Location of relevant instants without knowing the masks:

check for all possible combinations (for m = 2),
second-order DPA (for m = 2),
combinations of m = 2 candidates, or
principal component analysis.
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Conclusion

Gaussian mixture models and the EM algorithm can be used
for profiling of a masked implementation with incomplete
knowledge.

For a single-bit second-order setting:

Experimental key recovery efficiency is clearly better than
second-order DPA and close to templates.

Masking may not be sufficient to secure cryptographic
implementations.
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