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Side-channel collision attacks

Detect the equality of intermediate variables — the collision —
measuring the power consumption:

P1

EK

P2

Equal

A collision after the first round of AES may imply:

S(a + k1) + S(a + k2) = S(b + k1) + S(b + k2),

which gives us information on k1, k2 (Schramm et al., 2004).
See also a recent attack on Alpha-MAC [BBKK07].
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Countermeasures
A typical countermeasure is masking. The idea is to make the
dependency between intermediate variables and a plaintext weaker:
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Some properties may be exploited to pass through masked rounds.
Handschuh and Preneel used a differential to obtain information on
the subkey of an unmasked round of DES [HP06].

We propose to use powerful distinguishers that give information on
masked subkeys.
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What we do

Attack AES with 2, 3, and 4 masked rounds.

Use the AES differential/square properties to reveal the secret key
using the collision technique.
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Simple collision attack on AES (2 masked rounds)

We use 2-round 2−6 differential:
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and search for 4 collisions before the 3rd round.



Simple collision attack on AES (2 masked rounds)

We use structures to reduce the number of measurements:

4

C C

24 texts ⇒ ∼ 28 pairs ⇒ 4 right pairs ⇒ 32 bits of key.
Overall: 72 measurements + ∼ 232 offline operations (key testing).



Impossible collision attack (3 masked rounds)

We use 3-round 2−22 differential:
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Our idea is to detect the absence of collisions.
A right pair reveals information about the first subkey.

The probability of a right pair is 2−22. We test 223 pairs to get 2
right ones.
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Impossible collision attack (3 masked rounds)

We test 223 pairs (with a fixed C).
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212 texts =⇒ 223 pairs
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Impossible collision attack (3 masked rounds)

The probability of the wrong pair to survive is ∼ 15/16. We need
to filter them.

Right pair

C C

Wrong pair

C C

?

If we modify constants a right pair survives while a wrong one may
not with p = 1

16 .



Impossible collision attack (3 masked rounds)

The probability of the wrong pair to survive is ∼ 15/16. We need
to filter them.

Right pair

C C

Wrong pair

C C

?

If we modify constants a right pair survives while a wrong one may
not with p = 1

16 .



Impossible collision attack (3 masked rounds)
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We need 220 measurements and about 227 time.

However, we have to detect the absence of collisions accurately.
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Errors in the impossible collision attack

The probability of the differential (p) was 2−22 so we test about
1/p = 222 pairs.

Let errors be: P(right pair survives) = α,
P(wrong pair survives) = β.
Then the following condition on the number M of the tested pairs
should hold:

M >

(
1

p

)logβ/α β

,

which implies β < α.

How to satisfy the last one?
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Errors in the impossible collision attack

β < α

Introduce new notation:
αB — the probability of a difference in a single byte to be
recognized;
βB — that of a collision in a single byte to be missed.

Then

β =

(
255
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βB +

αB

256

)16

; α = α16
B .

So the condition is
βB < αB .
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Multiset collisions. Distinguisher

3-round Gilbert-Minier distinguisher:

3 roundsy

C

s
of AES

Among 216 distinct C ’s always exist C ′,C ′′:

sC ′
[y ] ≡ sC ′′

[y ] (256 collisions).

Actually 6 trials are enough.
Overall 6 · 216 ≈ 218.5 plaintexts are needed to find such a C -pair.
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Multiset collision attack I (4 masked rounds)

Add a round in the beginning:
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28 groups w.r.t. s

232 texts

For each key guess we construct 6-values vectors for the
distinguisher.
The offline complexity is 245 AES rounds.
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However, it becomes more complicated to use the distinguisher (a
specific matching problem arises).
The offline complexity is 254 AES rounds.
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Summary of the results

Method Complexity Masked Attack
Measur-ts Off-line rounds

Simple 26–27 232 2 Full key recovery
Impossible 221 229 3 Full key recovery
MultiSet 218.5 220 3 Distinguisher
MultiSet 232 244.5 4 32 key bits recovery
MultiSet 229–230 254 4 32 key bits recovery



Setup

Implemented by André Stemper:

• AES-128 RISC microcontroller;

• Microchip PIC16F87 clocked at 4Mhz;

• LeCroy 9374L 1GHz digital oscilloscope;

• Measurement time: 0.35s per measurement (oscilloscope is
the bottleneck).



Attacks inside

Simple collision attack:



The features of implementation

• Protection against EM-radiation (Faraday cage);

• Automatic threshold search in the simple collision attack (4
collisions help);

• Manual search for a threshold to detect a collision in the
impossible collision attack;

• Use analog filters for the communication noise removal.



Conclusions

Simple collision attacks for AES with 2 masked rounds.

Detecting the absence of collisions gives information about the
key.

A powerful r -round distinguisher can break through r + 1
masked rounds.

Perhaps one should mask all 10 rounds of AES-128.


