SSE Implementation of Multivariate PKCs on Modern X86 CPUs

Chen-Mou Cheng

Department of Electrical Engineering National Taiwan University Taipei, Taiwan ccheng@cc.ee.ntu.edu.tw

September 7, 2009

< □ > < □ > < □ > < □ > < □ > < □ > = □

Authors

- This is a joint work with
 - Jintai Ding, University of Cincinnati, USA
 - Bo-Yin Yang, Academia Sinica, Taiwan
 - Students
 - * Anna Inn-Tung Chen, University of Michigan, USA
 - ★ Ming-Shing Chen, National Taiwan University, Taiwan
 - Tien-Ren Chen, National Immigration Agency, Taiwan
 - Eric Li-Hsiang Kuo, Academia Sinica, Taiwan
 - ★ Frost Yu-Shuang Lee, University of Michigan, USA

Outline

- Multivariate PKCs
- *SSE*, the x86 vector instruction set extensions
- Using SSSE3 to speed up binary MPKCs
- MPKCs over odd prime fields
- Using SSE2 to speed up odd MPKCs
- Some counter-intuitive (but fast!) techniques
- Performance results

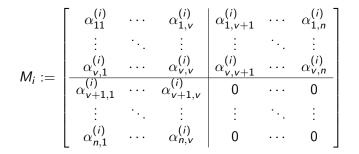
Multivariate PKCs

$$\mathcal{P}: \mathbf{w} \in \mathcal{K}^n \xrightarrow{\mathcal{S}} \mathbf{x} = \mathbf{M}_{\mathcal{S}} \mathbf{w} + \mathbf{c}_{\mathcal{S}} \xrightarrow{\mathcal{Q}} \mathbf{y} \xrightarrow{\mathcal{T}} \mathbf{z} = \mathbf{M}_{\mathcal{T}} \mathbf{y} + \mathbf{c}_{\mathcal{T}} \in \mathcal{K}^m$$

• Public map of a typical multivariate PKC over base field $K = \mathbb{F}_q$

- ► S and T affine and invertible
- Q quadratic, known as as the central map
- For encryption schemes, n < m
- For signature schemes, n > m
- Future-proof against quantum computers
- Fast because MPKCs replace arithmetic operations on large units by faster operations on many small units

Unbalanced Oil and Vinegar



Rainbow-like Signatures

• Stage-wise UOV
• For
$$0 < v_1 < v_2 < \dots < v_{u+1} = n$$

• $S_l := \{1, 2, \dots, v_l\}$
• $O_l := \{v_l + 1, \dots, v_{l+1}\}$
• $o_l := v_{l+1} - v_l = |O_l|$
• $Q : \mathbf{x} = (x_1, \dots, x_n) \mapsto \mathbf{y} = (y_{v_1+1}, \dots, y_n)$
• $y_k := q_k(\mathbf{x})$, with following form if $v_l < k \le v_{l+1}$
 $q_k = \sum_{i \le j \le v_l} \alpha_{ij}^{(k)} x_i x_j + \sum_{i \le v_l < j < v_{l+1}} \alpha_{ij}^{(k)} x_i x_j + \sum_{i < v_{l+1}} \beta_i^{(k)} x_i$

• Given all y_i with $v_l < i \le v_{l+1}$ and all x_j with $j \le v_l$, we can compute $x_{v_l+1}, \ldots, x_{v_{l+1}}$ via elimination

< 🗇 🕨 < 🖃 🕨

TTS: Rainbow with Sparse Middle

• Has a sparse ${\mathcal Q}$

- \mathcal{Q}^{-1} needs solving just linear equations, like in Rainbow
- Example from 2004: TTS(20,28)

$$y_i = x_i + \sum_{j=1}^7 p_{ij} x_j x_{8+(i+j \mod 9)}, i = 8, \dots, 16$$

$$y_{17} = x_{17} + p_{17,1}x_1x_6 + p_{17,2}x_2x_5 + p_{17,3}x_3x_4 + p_{17,4}x_9x_{16} + p_{17,5}x_{10}x_{15} + p_{17,6}x_{11}x_{14} + p_{17,7}x_{12}x_{13}$$

$$y_{18} = x_{18} + p_{18,1}x_2x_7 + p_{18,2}x_3x_6 + p_{18,3}x_4x_5 + p_{18,4}x_{10}x_{17} + p_{18,5}x_{11}x_{16} + p_{18,6}x_{12}x_{15} + p_{18,7}x_{13}x_{14}$$

$$y_{i} = x_{i} + p_{i,0}x_{i-11}x_{i-9} + \sum_{j=19}^{i} p_{i,j-18}x_{2(i-j)-(i \mod 2)}x_{j} + \sum_{j=i+1}^{27} p_{i,j-18}x_{i-j+19}x_{j}, i = 19, \dots, 27$$

The C* Scheme

- Proposed by Matsumoto and Imai in 1988
- Broken by Patarin in 1995
- The central map is a monomial over \mathbb{F}_{q^n}

$$\mathcal{Q}(x) = x^{1+q^{\theta}} = x \cdot x^{q^{\theta}}$$

- \mathbb{F}_{q^n} is an *n*-dimension vector space over \mathbb{F}_q
- Since $x \mapsto x^q$ is linear, \mathcal{Q} is quadratic
- Requires that $gcd(1 + q^{\theta}, q^n 1) = 1$
- $\mathcal Q$ is inverted by raising to the inverse power of $1+q^ heta$

HFE: Hidden Field Equations

- Generalization of C*
- The central map is a *polynomial* over \mathbb{F}_{q^n}

$$\mathcal{Q}(x) = \sum_{q^i+q^j \leq D} \mathsf{a}_{ij} x^{q^i+q^j} + \sum_{q^i \leq D} \mathsf{b}_i x^{q^i} + c$$

• Inversion is much slower than C^*

ℓ -invertible Cycles

- Like C^* , $\ell \mathsf{IC}$ also uses an intermediate field $\mathbb{L}^* = \mathbb{K}^k$
- Extends C^* by using the following central map from $(\mathbb{L}^*)^\ell$ to itself

$$egin{array}{rcl} \mathcal{Q}: (X_1,\ldots,X_\ell) &\mapsto & (Y_1,\ldots,\,Y_\ell) \ &\coloneqq & (X_1X_2,\,X_2X_3,\ldots,\,X_{\ell-1}X_\ell,X_\ell X_1^{q^lpha}) \end{array}$$

 ℓ -invertible Cycles, $\ell = 3$

- "Standard 3IC," $\ell = 3, \alpha = 0$
- Inversion in $(\mathbb{L}^*)^3$ is easy

$$\begin{array}{lll} \mathcal{Q}: & (X_1, X_2, X_3) \in (\mathbb{L}^*)^3 \mapsto \\ & (X_1 X_2, X_2 X_3, X_3 X_1) \\ \mathcal{Q}^{-1}: & (Y_1, Y_2, Y_3) \in (\mathbb{L}^*)^3 \mapsto \\ & (\sqrt{Y_1 Y_3/Y_2}, \sqrt{Y_1 Y_2/Y_3}, \sqrt{Y_2 Y_3/Y_1},) \end{array}$$

- Can apply the idea of "intermediate fields" to HFE as well
 - ▶ 3HFE, 4HFE, ...
 - Generally faster than HFE

MPKC Modifiers

- All vanilla MPKCs have been broken
- Need modifiers to address attacks
 - Minus (-): throw away some polynomials
 - Prefix or postfix (p): force some $w_i = 0$
- A few others; not used in our implementation

Are MPKCs Still Fast?

- Progress in integer arithmetic
 - ▶ In 80's, CPUs computed one 32-bit integer product every 15–20 cycles
 - ► In 2000, x86 CPUs computed one 64-bit product every 3–10 cycles
 - AMD Opteron today produces one 128-bit product every 2 cycles
 - Good for ECC!
- In contrast, progress in \mathbb{F}_{2^q} arithmetic is *slow*
 - ▶ 6502 or 8051: a dozen cycles via three table look-ups
 - Modern x86: roughly same number of cycles
- Moore's law favors computation, not so much memories
 - Memory access speed increased at a snail's pace
- Wang et al. made life even harder for MPKCs
 - Forcing longer message digests
 - Slower MPKCs but RSA untouched

Questions We Want to Answer

- Can all the extras on modern commodity CPUs be put to use with MPKCs as well?
- If so, how do MPKCs compare to traditional PKCs today, and how is that likely going to change for the future?

SSE, the X86 Vector Instruction Set Extensions

- SSE: Streaming SIMD Extensions
 - SIMD: Single Instruction Multiple Data
- Most useful: SSE2 integer instructions
 - Work on 16 xmm 128-bit registers
 - As packed 8-, 16-, 32- or 64-bit operands
 - Move xmm to/from xmm, memory (even unaligned), x86 registers
 - Shuffle data and pack/unpack on vector data
 - Bit-wise logical operations like AND, OR, NOT, XOR
 - Shift left, right logical/arithmetic by units, or entire xmm byte-wise
 - Add/subtract on 8-, 16-, 32- and 64-bits
 - Multiply 16-bit and 32-bits in various ways

• SSSE3's PSHUFB also useful

PSHUFB in SSSE3

- Packed Shuffle Bytes
 - ▶ Source: (x₀,..., x₁₅)
 - ▶ Destination: (*y*₀,...,*y*₁₅)
 - Result: $(y_{x_0 \mod 32}, \dots, y_{x_{15} \mod 32})$, treating x_{16}, \dots, x_{31} as 0

- ∢ ∃ ▶

Speeding Up MPKCs over \mathbb{F}_{16}

- TT : 16 × 16 table, with $TT_{i,j} = i * j, 0 \le i, j < 16$
- To compute $a\mathbf{v}$, $a\in\mathbb{F}_{16},\mathbf{v}\in(\mathbb{F}_{16})^{16}$
 - $xmm \leftarrow a$ -th row of TT
 - ► $a\mathbf{v} \leftarrow \mathsf{PSHUFB} \mathsf{xmm}, \mathbf{v}$
- \bullet Works similarly for $\textbf{a} \in (\mathbb{F}_{16})^2, \textbf{v} \in (\mathbb{F}_{16})^{32}$
 - Need to unpack, do PSHUFBs, then pack
- Delivers $2 \times$ performance over simple bit slicing in private map evaluation of rainbow and TTS
- Some other platforms also have similar instructions
 - AMD's SSE5: PPERM (superset of PSHUFB)
 - IBM POWER AltiVec/VMX: PERMU

Speeding Up MPKCs over \mathbb{F}_{256}

- $TL: 256 \times 16$ table, with $TL_{i,j} = i * j, 0 \le i < 256, 0 \le j < 16$
- $TH: 256 \times 16$ table, with $TH_{i,j} = i * (16j), 0 \le i < 256, 0 \le j < 16$
- To compute *a*v, *a* ∈ F₂₅₆, v ∈ (F₂₅₆)¹⁶ *a*v_i = *a*(16[v_i/16]) + *a*(v_i mod 16), 0 ≤ *i* < 16
 v'_i ← *a*(16[v_i/16])
 v'_i ← [v_i/16] (SHIFT)
 xmm ← *a*-th row of *TH*v' ← PSHUFB xmm,v'
 v_i ← *a*(v_i mod 16)
 v_i ← v_i mod 16 (AND)
 xmm ← *a*-th row of *TL*v ← PSHUFB xmm.v

• $a\mathbf{v} \leftarrow \mathbf{v} + \mathbf{v}'$ (OR)

くほと くほと くほと

Evaluating Public Maps

• Normally we do
$$z_k = \sum_i w_i \left[P_{ik} + Q_{ik} w_i + \sum_{i < j} R_{ijk} w_j \right]$$

- However, the memory access pattern is not good here
- Instead, it is faster if we do

•
$$\mathbf{c} \leftarrow [\mathbf{w}^T, (w_i w_j)_{i \leq j}]^T$$

- ▶ $z \leftarrow Pc$, where P is the $m \times n(n+3)/2$ public-key matrix
- Due to Faugère and Gilbert

MPKCs over Odd Prime Fields

- Good for defending against Gröbner basis attacks
- The field equation $X^q X = 0$ becomes much less useful

Basic Building Blocks for Speeding Up Odd MPKCs

- IMULHIb: the upper half in a signed product of two b-bit words
- Useful for computing $\lfloor xy/2^b \rfloor$

• For
$$-2^{b-1} \le x \le 2^{b-1} - (q-1)/2$$

•
$$t \leftarrow \mathsf{IMULHI}b \lfloor 2^b/q \rfloor, x + \lfloor (q-1)/2 \rfloor$$

•
$$y \leftarrow x - qt$$
 computes $y = x \mod q, |y| \le q$

• For q = 31 and b = 16, we can do even better

For
$$-32768 \le x \le 32752$$

•
$$t \leftarrow \mathsf{IMULHI16}\ 2114, x + 15$$

•
$$y \leftarrow x - 31t$$
 computes $y = x \mod 31, -16 \le y \le 15$

Remarks on Getting More Performance

- Laziness often leads to optimality
 - Do not always need the tightest range
 - The less reductions, the better!
 - Packing \mathbb{F}_q -blocks into binary can use more bits than necessary
 - As long as the map is injective and convenient to compute

Speeding Up Polynomial Evaluation

- PMADDWD: Packed Multiply and Add, Word to Double-word
 - Source: $(x_0, ..., x_7)$
 - Destination: (y₀,..., y₇)
 - Result: $(x_0y_0 + x_1y_1, x_2y_2 + x_3y_3, x_4y_4 + x_5y_5, x_6y_6 + x_7y_7)$
- Helpful in evaluating $\mathbf{z} = \mathbf{P}\mathbf{c}$, piece by piece
 - Let Q be a 4 × 2 submatrix of P
 - \mathbf{d}^{T} be the corresponding 2 × 1 submatrix of \mathbf{c}
 - ▶ r1 ← $(Q_{11}, Q_{12}, Q_{21}, Q_{22}, Q_{31}, Q_{32}, Q_{41}, Q_{42})$
 - ▶ r2 ← $(d_1, d_2, d_1, d_2, d_1, d_2, d_1, d_2)$
 - PMADDWD r1, r2 computes Qd
 - Continue in 32-bits until reduction mod q
- Saves a few mod q operations and delivers 1.5 imes performance

Inversion in \mathbb{F}_{31}

- Normally do table look-ups
- Alternative: $x \mapsto x^{29}$
 - $y \leftarrow x * x * x \mod 31$ ($y = x^3$)
 - $y \leftarrow x * y * y \mod 31 (y = x^7)$
 - $y \leftarrow y * y \mod 31 \ (y = x^{14})$
 - $y \leftarrow x * y * y \mod 31 (y = x^{29})$
- Deliver 2× performance over table look-ups!

Wiedemann vs. Gauss Elimination

- How to solve a medium-sized dense linear system?
 - Wiedemann iterative solver for $\mathbf{A}\mathbf{x} = \mathbf{b}$
 - ***** Compute $\mathbf{z}\mathbf{A}^{i}\mathbf{b}$ for some \mathbf{z}
 - * Compute minimal polynomial using Berlekamp-Massey
 - Requires $O(2n^3)$ field multiplications
 - Straightforward Gauss elimination requires $O(n^3/3)$
- However, Wiedemann involves much less reductions modulo q
- Result: Wiedemann beats Gauss by a factor of 2!

Special Tower Fields

- \mathbb{F}_{q^k} isomorphic to $\mathbb{F}_q[t]/p(t)$, deg p = k and p irreducible
- For k|(q-1) and a few other cases, $p(t) = t^k a$ for a small a
 - Deliver $2 \times$ reduction performance over cases where p has 3 terms
 - $X \mapsto X^q$ becomes very easy to compute
 - Multiplication and division are also very easy
 - Inversion: (again) raising to the $(q^k 2)$ -th power!
- Square roots computed via Tonelli-Shanks
- Univariate equations solved via Cantor-Zassenhaus

Performance Comparison on Intel Q9550

Scheme	Result	PubKey	PriKey	KeyGen	PubMap	PriMap
RSA (1024 bits)	128 B	128 B	1024 B	27.2 ms	26.9 μs	806.1 μs
4HFE-p (31,10)	68 B	23 KB	8 KB	4.1 ms	6.8 μs	659.7 μs
3HFE-p (31,9)	67 B	7 KB	5 KB	0.8 ms	2.3 μs	60.5 μs
RSA (1024 bits)	128 B	128 B	1024 B	26.4 ms	22.4 μs	813.5 μs
ECDSA (160 bits)	40 B	40 B	60 B	0.3 ms	409.2 μs	357.8 μs
C*-p (pFLASH)	37 B	72 KB	5 KB	28.7 ms	97.9 μs	473.6 μs
3IC-p (31,18,1)	36 B	35 KB	12 KB	4.2 ms	$11.7~\mu s$	256.2 μs
Rainbow (31,24,20,20)	43 B	57 KB	150 KB	120.4 ms	17.7 μs	70.6 μs
TTS (31,24,20,20)	43 B	57 KB	16 KB	13.7 ms	18.4 μ s	14.2 μ s

Measured using SUPERCOP: System for unified performance evaluation related to cryptographic operations and primitives. http://bench.cr.yp.to/supercop.html, April 2009.

Concluding Remarks

- Take-away point: Odd MPKCs worth studying!
 - Algebraic attacks become harder
 - Friendly to mainstream computing devices
 - ★ X86 CPUs have vector instructions
 - ★ High-end FPGAs have multiplier IPs
 - * Also good for many-core GPUs (NVIDIA, ATI/AMD, Larrabee)

Thanks for Listening!

• Questions or comments?

A ∰ ▶ A ∃