

First-Order Side-Channel Attacks on the Permutation Tables Countermeasure

Emmanuel Prouff and Robert McEvoy

Oberthur Technologies, France & University College Cork, Ireland

Security Solutions for a Changing World

Attacks

- Algorithm Processing leaks information about the manipulated data
- Results in information leakage about secret keys
- Side Channel Analyses (SCA) exploit this leakage: (HO-)CPA [BrierClavierOlivier04],
 MIA [GierlichsBatinaTuylsPreneel08],
 Template Attacks [ChariRaoRohatgi02].

Attacks

- Algorithm Processing leaks information about the manipulated data
- Results in information leakage about secret keys
- Side Channel Analyses (SCA) exploit this leakage: (HO-)CPA [BrierClavierOlivier04], MIA [GierlichsBatinaTuylsPreneel08], Template Attacks [ChariRaoRohatgi02].

Software Countermeasures

- Shuffling [HerbstOswaldMangard06]: each signal containing information about a sensitive variable is spread over random signals leaking at different times.
- Masking [ChariJultaRaoRohatgi99,GoubinPatarin99]: every sensitive data is modified by a random transformation.

Translation [CJRR99,GP99]: a random value M $\tilde{\mathbf{U}} = \mathbf{U} + M$,

- $+\,$ efficient to mask linear operation on $\boldsymbol{U}.$
- data/masked-data relation is very simple.

Translation [CJRR99,GP99]: a random value M $\tilde{\mathbf{U}} = \mathbf{U} + M$,

- $+\,$ efficient to mask linear operation on $\boldsymbol{U}.$
- data/masked-data relation is very simple.
- Linear Isomorphism [GP99]: a random linear function *L*

 $\tilde{\mathbf{U}} = L(\mathbf{U})$,

- + efficient to mask linear operation on **U**.
- + data/masked-data relation is more complex.
- flawed (zero is never masked) [FumaroliMayerDubois07].

Translation [CJRR99,GP99]: a random value M $\tilde{\mathbf{U}} = \mathbf{U} + M$,

- $+\,$ efficient to mask linear operation on $\boldsymbol{U}.$
 - data/masked-data relation is very simple.
- Linear Isomorphism [GP99]: a random linear function L

 $\tilde{\boldsymbol{\mathsf{U}}} = \boldsymbol{\mathit{L}}(\boldsymbol{\mathsf{U}}) \ ,$

- $+ \,$ efficient to mask linear operation on $\boldsymbol{U}.$
- $+ \$ data/masked-data relation is more complex.
 - flawed (zero is never masked) [FumaroliMayerDubois07].
- Permutation [Coron08]: randomly generate a permutation P

$\tilde{\mathbf{U}} = P(\mathbf{U})$,

- $+ \$ data/masked-data relation is more complex.
 - less efficient than the two others and flawed [This paper]

The Permutation-Table Countermeasure - 1

The Permutation-Table Countermeasure - 1

Protect a Block Cipher: every intermediate data \mathbf{U} is presented under the form $P(\mathbf{U})$.

Let $\boldsymbol{\mathsf{U}}$ and $\boldsymbol{\mathsf{V}}$ be two 8-bit long (sensitive) data.

Question: how to compute the sum $\bm{U}\oplus\bm{V}$ with the Permutation Masking without manipulating data that depend on \bm{U} and/or $\bm{V}?$

Question: how to compute the sum $\bm{U}\oplus\bm{V}$ with the Permutation Masking without manipulating data that depend on \bm{U} and/or $\bm{V}?$

Question [2nd formulation]: how to compute $P(\mathbf{U} \oplus \mathbf{V})$ from $P(\mathbf{U})$ and $P(\mathbf{V})$ without manipulating data that depend on \mathbf{U} and/or \mathbf{V} ?

Question: how to compute the sum $\bm{U}\oplus\bm{V}$ with the Permutation Masking without manipulating data that depend on \bm{U} and/or $\bm{V}?$

Question [2nd formulation]: how to compute $P(\mathbf{U} \oplus \mathbf{V})$ from $P(\mathbf{U})$ and $P(\mathbf{V})$ without manipulating data that depend on \mathbf{U} and/or \mathbf{V} ?

Obvious Answer: at each execution, generate the look-up table of the function $XT_8(x, y) = P(P^{-1}(x) \oplus P^{-1}(y))$.

Then, to compute $P(\mathbf{U} \oplus \mathbf{V})$ from $P(\mathbf{U})$ and $P(\mathbf{V})$ process $XT_8(P(\mathbf{U}), P(\mathbf{V})) = [P(\mathbf{U} \oplus \mathbf{V})]$

Question: how to compute the sum $\bm{U}\oplus\bm{V}$ with the Permutation Masking without manipulating data that depend on \bm{U} and/or $\bm{V}?$

Question [2nd formulation]: how to compute $P(\mathbf{U} \oplus \mathbf{V})$ from $P(\mathbf{U})$ and $P(\mathbf{V})$ without manipulating data that depend on \mathbf{U} and/or \mathbf{V} ?

Obvious Answer: at each execution, generate the look-up table of the function $XT_8(x, y) = P(P^{-1}(x) \oplus P^{-1}(y))$.

Then, to compute $P(\mathbf{U} \oplus \mathbf{V})$ from $P(\mathbf{U})$ and $P(\mathbf{V})$ process $XT_8(P(\mathbf{U}), P(\mathbf{V})) = [P(\mathbf{U} \oplus \mathbf{V})]$

- allocation of table of size 2^{16} in RAM

Question: how to compute the sum $\bm{U}\oplus\bm{V}$ with the Permutation Masking without manipulating data that depend on \bm{U} and/or $\bm{V}?$

Question [2nd formulation]: how to compute $P(\mathbf{U} \oplus \mathbf{V})$ from $P(\mathbf{U})$ and $P(\mathbf{V})$ without manipulating data that depend on \mathbf{U} and/or \mathbf{V} ?

More Tricky Answer: generate two random permutations P_1 and P_2 operating on 4-bit data and define P such that $P = P_2 || P_1$

Then ...

$$\begin{array}{lll} \mathrm{XT}_4^1(x||y) &=& P_1(P_1^{-1}(x)\oplus P_1^{-1}(y)) \ , \\ \mathrm{XT}_4^2(x||y) &=& P_2(P_2^{-1}(x)\oplus P_2^{-1}(y)) \ . \end{array}$$

$$\begin{array}{lll} \operatorname{XT}_4^1(x||y) &=& P_1(P_1^{-1}(x) \oplus P_1^{-1}(y)) \ , \\ \operatorname{XT}_4^2(x||y) &=& P_2(P_2^{-1}(x) \oplus P_2^{-1}(y)) \ . \end{array}$$

See **U** and **V** as two 4-bit data: $\mathbf{U} = U' || U$ and $\mathbf{V} = V' || V$.

$$\begin{array}{lll} \mathtt{XT}_4^1(x||y) &=& P_1(P_1^{-1}(x)\oplus P_1^{-1}(y)) \ , \\ \mathtt{XT}_4^2(x||y) &=& P_2(P_2^{-1}(x)\oplus P_2^{-1}(y)) \ . \end{array}$$

See **U** and **V** as two 4-bit data: $\mathbf{U} = U' || U$ and $\mathbf{V} = V' || V$. Use the tables to compute $P(\mathbf{U} \oplus \mathbf{V})$ from $P(\mathbf{U})$ and $P(\mathbf{V})$:

$$\begin{array}{lll} \mathtt{XT}_4^1(x||y) &=& P_1(P_1^{-1}(x)\oplus P_1^{-1}(y)) \ , \\ \mathtt{XT}_4^2(x||y) &=& P_2(P_2^{-1}(x)\oplus P_2^{-1}(y)) \ . \end{array}$$

See **U** and **V** as two 4-bit data: $\mathbf{U} = U' || U$ and $\mathbf{V} = V' || V$.

- Use the tables to compute $P(\mathbf{U} \oplus \mathbf{V})$ from $P(\mathbf{U})$ and $P(\mathbf{V})$:
 - 1. Compute

 $XT_4^1(P_1(U)||P_1(V)).$

It equals $P_1(U \oplus V)$.

$$\begin{array}{lll} \mathtt{XT}_4^1(x||y) &=& P_1(P_1^{-1}(x)\oplus P_1^{-1}(y)) \ , \\ \mathtt{XT}_4^2(x||y) &=& P_2(P_2^{-1}(x)\oplus P_2^{-1}(y)) \ . \end{array}$$

• See **U** and **V** as two 4-bit data: $\mathbf{U} = U' || U$ and $\mathbf{V} = V' || V$.

- Use the tables to compute $P(\mathbf{U} \oplus \mathbf{V})$ from $P(\mathbf{U})$ and $P(\mathbf{V})$:
 - 1. Compute

 $XT_4^1(P_1(U)||P_1(V)).$

It equals $P_1(U \oplus V)$.

2. Compute

 $XT_4^2(P_2(U')||P_2(V')).$

It equals $P_2(U' \oplus V')$.

$$\begin{array}{lll} \mathtt{XT}_4^1(x||y) &=& P_1(P_1^{-1}(x)\oplus P_1^{-1}(y)) \ , \\ \mathtt{XT}_4^2(x||y) &=& P_2(P_2^{-1}(x)\oplus P_2^{-1}(y)) \ . \end{array}$$

See **U** and **V** as two 4-bit data: $\mathbf{U} = U' || U$ and $\mathbf{V} = V' || V$.

- Use the tables to compute $P(\mathbf{U} \oplus \mathbf{V})$ from $P(\mathbf{U})$ and $P(\mathbf{V})$:
 - 1. Compute

 $XT_4^1(P_1(U)||P_1(V)).$

It equals $P_1(U \oplus V)$.

2. Compute

 $XT_4^2(P_2(U')||P_2(V')).$

It equals $P_2(U' \oplus V')$.

3. Concatenate

 $P_2(U' \oplus V') || P_1(U \oplus V).$

We get $P(\mathbf{U} \oplus \mathbf{V})$.

Pseudo code:

- 1. Store $P_1(U)||P_1(V)$ into register R.
- 2. Load $\mathtt{XT}_4^1[\mathrm{R}]$ into output register $\mathrm{R}'.$
- 3. Output R^\prime

Pseudo code:

- 1. Store $P_1(U)||P_1(V)$ into register R.
- 2. Load $\mathtt{XT}_4^1[\mathrm{R}]$ into output register $\mathrm{R}'.$
- 3. Output R^\prime

Observation: data U||V is manipulated under the form $P_1(U)||P_1(V)$ and not P(U||V)

Pseudo code:

- 1. Store $P_1(U)||P_1(V)$ into register R.
- 2. Load $\mathtt{XT}_4^1[\mathrm{R}]$ into output register $\mathrm{R}'.$
- 3. Output R^\prime

Observation: data U||V is manipulated under the form $P_1(U)||P_1(V)$ and not P(U||V)

Flaw: since the same random permutation P_1 is applied to U and V, variable $P_1(U)||P_1(V)$ statistically depends on U||V.

Pseudo code:

- 1. Store $P_1(U)||P_1(V)$ into register R.
- 2. Load $\mathtt{XT}_4^1[\mathrm{R}]$ into output register $\mathrm{R}'.$
- 3. Output R^\prime

Observation: data U||V is manipulated under the form $P_1(U)||P_1(V)$ and not P(U||V)

Flaw: since the same random permutation P_1 is applied to U and V, variable $P_1(U)||P_1(V)$ statistically depends on U||V.

For instance: if U equals V then $P_1(U)$ equals $P_1(V)$.

CPA Attack

• We assume that U||V is a guessable key-dependent random variable.

- We assume that U||V is a guessable key-dependent random variable.
- Due to the Flaw, this implies that $P_1(U)||P_1(V)$ is a key-dependent random variable.

- We assume that U||V is a guessable key-dependent random variable.
- Due to the Flaw, this implies that $P_1(U)||P_1(V)$ is a key-dependent random variable.

- We assume that U||V is a guessable key-dependent random variable.
- Due to the Flaw, this implies that $P_1(U)||P_1(V)$ is a key-dependent random variable.

• Let L be the leakage on $P_1(U)||P_1(V)$:

$$L = \phi(P_1(U)||P_1(V)) + \text{Noise}$$
 .

- We assume that U||V is a guessable key-dependent random variable.
- Due to the Flaw, this implies that $P_1(U)||P_1(V)$ is a key-dependent random variable.

• Let L be the leakage on $P_1(U)||P_1(V)$:

$$L = \phi(P_1(U)||P_1(V)) + \mathsf{Noise}$$
 .

• Let $\hat{\phi}$ be a consumption model.

- We assume that U||V is a guessable key-dependent random variable.
- Due to the Flaw, this implies that $P_1(U)||P_1(V)$ is a key-dependent random variable.

• Let L be the leakage on $P_1(U)||P_1(V)$:

 $L = \phi(P_1(U)||P_1(V)) + \text{Noise}$.

- Let $\hat{\phi}$ be a consumption model.
- For every key hypothesis compute a prediction $\hat{U}||\hat{V}$ on U||V and estimate:

$$ho(L, \hat{\phi}(\hat{U} || \hat{V}))$$

Pre-processing(s)

Result: depending on the nature of ϕ the attack sometimes fails!

 $\phi(P_1(U)||P_1(V)) = \phi_1(P_1(U)) + \phi_2(P_1(V)) .$

$$\phi(P_1(U)||P_1(V)) = \phi_1(P_1(U)) + \phi_2(P_1(V))$$
.

Example: for $\phi = HW$ then we have

 $HW(P_1(U)||P_1(V)) = HW(P_1(U)) + HW(P_1(V))$.

$$\phi(P_1(U)||P_1(V)) = \phi_1(P_1(U)) + \phi_2(P_1(V))$$
.

Example: for $\phi = HW$ then we have

 $HW(P_1(U)||P_1(V)) = HW(P_1(U)) + HW(P_1(V))$.

Why? Because in this case the mean of $\phi(P_1(U)||P_1(V))$ does not depend on U||V.

$$\phi(P_1(U)||P_1(V)) = \phi_1(P_1(U)) + \phi_2(P_1(V))$$
.

Example: for $\phi = HW$ then we have

 $HW(P_1(U)||P_1(V)) = HW(P_1(U)) + HW(P_1(V))$.

Why? Because in this case the mean of $\phi(P_1(U)||P_1(V))$ does not depend on U||V. What to do? Focus on higher order statistical central moments, *e.g.* the central moments of order 2:

$$\rho((L-\mathsf{E}[L])^2, f(\hat{U}||\hat{V}))$$

where f is a well-chosen function.

Define a Sound Prediction Function

Example of choice for f: choose $f = \phi$ or $f = \phi^2$.

Example of choice for f: choose $f = \phi$ or $f = \phi^2$. Result: does not work! Surprising! attack works if P_1 is a simple translation instead of a permutation [WaddleWagner04].

Example of choice for f: choose $f = \phi$ or $f = \phi^2$.

Result: does not work!

Surprising! attack works if P_1 is a simple translation instead of a permutation [WaddleWagner04].

Explanation: relation between U||V and $P_1(U)||P_1(V)$ is much more complex than for classical masking by translation.

Surprising! attack works if P_1 is a simple translation instead of a permutation [WaddleWagner04].

Explanation: relation between U||V and $P_1(U)||P_1(V)$ is much more complex than for classical masking by translation.

Proposal: use the function $f(\hat{U}||\hat{V}) = \delta_{\hat{I}I}(\hat{V})$ defined by $\delta_{\hat{I}I}(\hat{V})$ equals 1 if $\hat{U} = \hat{V}$ and equals 0 otherwise.

Surprising! attack works if P_1 is a simple translation instead of a permutation [WaddleWagner04].

Explanation: relation between U||V and $P_1(U)||P_1(V)$ is much more complex than for classical masking by translation.

Proposal: use the function $f(\hat{U}||\hat{V}) = \delta_{\hat{U}}(\hat{V})$ defined by $\delta_{\hat{U}}(\hat{V})$ equals 1 if $\hat{U} = \hat{V}$ and equals 0 otherwise.

Proved to be an optimal choice in the Gaussian Model with $\phi = HW$. It corresponds to an estimation of the function

$$\hat{u}, \hat{v} \mapsto \mathsf{E}\left[(L - \mathsf{E}\left[L\right])^2 | \hat{U} = \hat{u}, \hat{V} = \hat{v}\right] \;\;,$$

(proved to be the optimal choice in [ProuffRivain09]).

Surprising! attack works if P_1 is a simple translation instead of a permutation [WaddleWagner04].

Explanation: relation between U||V and $P_1(U)||P_1(V)$ is much more complex than for classical masking by translation.

Proposal: use the function $f(\hat{U}||\hat{V}) = \delta_{\hat{U}}(\hat{V})$ defined by $\delta_{\hat{U}}(\hat{V})$ equals 1 if $\hat{U} = \hat{V}$ and equals 0 otherwise.

Proved to be an optimal choice in the Gaussian Model with $\phi = HW$. It corresponds to an estimation of the function

$$\hat{u}, \hat{v} \mapsto \mathsf{E}\left[(L - \mathsf{E}\left[L\right])^2 | \hat{U} = \hat{u}, \hat{V} = \hat{v}\right] \;\;,$$

(proved to be the optimal choice in [ProuffRivain09]). Alternative (more complex) functions are proposed in more general models.

Application of the attack

Application of the attack

• AES implementation protected with Permutation Countermeasure.

- AES implementation protected with Permutation Countermeasure.
- Two scenarios

- AES implementation protected with Permutation Countermeasure.
- Two scenarios
- 1. During the first AddRoundKey operation:

$$U = X_I$$
 and $V = K_I$,

where X_l is a plaintext nibble and K_l is key nibble. Goal: retrieve K_l .

- AES implementation protected with Permutation Countermeasure.
- Two scenarios
- 1. During the first AddRoundKey operation:

$$U = X_I$$
 and $V = K_I$,

where X_l is a plaintext nibble and K_l is key nibble. Goal: retrieve K_l .

2. During the first MixColumn operation:

$$U = S_I[X \oplus K]$$
 and $V = S_I[X' \oplus K']$,

where (X, X') is a pair of plaintext bytes, (K, K') is a pair of key bytes and S_l corresponds to the 4 lowest bits of the AES Sbox.

Goal: retrieve (K, K').

First Scenario

Simulations

Noise std	0	0.5	5	7	10	
Nb of measurements	100	1,000	60,000	230,000	900,000	

Experiments

Simulations

Noise standard deviation	0	0.5	1	2	5	7	10
Nb of measurements [MIA with Kernel]	2,500	20,000	60,000	290,000	$> 10^{6}$	$> 10^{6}$	$> 10^{6}$
Nb of measurements [Parametric MIA]	na	3,000	4,000	25,000	250,000	500,000	800,000
Nb of measurements [CPA with fopt]	1,000	1,000	1,500	6,500	120,000	550,000	$> 10^{6}$

Experiments

Security Solutions for a Changing World

- A first-order flaw exists in the permutation tables countermeasure proposed in [C08].
- To exploit this leakage, 2 attacks have been developed in different scenarii: CPA and MIA.
- Attacks have been verified in both simulation and practice.
- A patch for the permutation tables countermeasure is proposed in the extended version of this paper.
- Even if the permutation tables countermeasure is flawed, exploiting this flaw requires more traces than an attack on a flawed masking scheme: when patched this masking must therefore be a good alternative against HO-SCA.

Thank you! Questions and/or Comments?

