Practical Electromagnetic Template Attack on HMAC

Pierre Alain Fouque¹ Gaétan Leurent¹ <u>Denis Réal</u>^{2,3} Frédéric Valette²

1 ENS, 75 Paris, France.

2 CELAR, 35 Bruz, France.

3 INSA-IETR, 35 Rennes, France.

September 7, 2009

Motivations

Why HMAC ?

- Standardized and deployed in a lot of Internet protocols.
- Security proofs.

SCA Attacks on HMAC

- DPA attacks on the hash function :
 - on MD4 and MD5 familly, SHA familly.
 - The internal states are figured out but isn't the value of k.

< m

 < m

Classical Countermeasures

- Randomization of the execution of the implementation.
- A new key for each new computation.

Can Side Channel Analysis be used in order to recover the whole HMAC secret key k with only 1 measure?

P.A. Fouque, G. Leurent, D. Réal, F. Valette Template attack on HMAC

Can Side Channel Analysis be used in order to recover the whole HMAC secret key k with only <u>1 measure</u>?

-∢ ≣ ▶

Outline

Introduction

- The Side Channel Leakage
- The cryptographic target : HMAC
- Our attack features

2 The Cryptanalysis

- The leakage on SHA-1
- The leakage on HMAC
- The sketch of the attack

3 Practical experiments

- The whole leakage
- The hamming distances involved

Outline

1 Introduction

- The Side Channel Leakage
- The cryptographic target : HMAC
- Our attack features

2 The Cryptanalysis

- The leakage on SHA-1
- The leakage on HMAC
- The sketch of the attack

3 Practical experiments

- The whole leakage
- The hamming distances involved

Outline

1 Introduction

- The Side Channel Leakage
- The cryptographic target : HMAC
- Our attack features

2 The Cryptanalysis

- The leakage on SHA-1
- The leakage on HMAC
- The sketch of the attack

O Practical experiments

- The whole leakage
- The hamming distances involved

Outline

1 Introduction

- The Side Channel Leakage
- The cryptographic target : HMAC
- Our attack features

2 The Cryptanalysis

- The leakage on SHA-1
- The leakage on HMAC
- The sketch of the attack

O Practical experiments

- The whole leakage
- The hamming distances involved

The Side Channel Leakage The cryptographic target : HMAC Our attack features

Prints of the internal cryptographic activity filter through

Cryptographic Devices

- microprocessor,
- FPGA,
- smart card ...

Side Channel

- computational time,
- ower consumption,
- electromagnetic radiations.

The Side Channel Leakage The cryptographic target : HMAC Our attack features

A (1) > A (2) > A

The side channel leakage can be used to mount attack

SCA Attacks

- Simple Power Analysis Attack (SPA),
- Template Analysis (TA),
- Differential Power Analysis Attack (DPA).

SCA Software Countermeasures

- SPA : power balanced implementation such as Montgomery Ladder,
- OPA-TA : secret randomization and masking.

Introduction

The Cryptanalysis Practical experiments Conclusion The Side Channel Leakage The cryptographic target : HMAC Our attack features

▲ □ ▶ ▲ □ ▶ ▲

HMAC features

The authentication code $HMAC_k(M)$ is defined as:

 $\mathsf{HMAC}_k(M) = H(\bar{k} \oplus \mathsf{opad} \mid \mid H(\bar{k} \oplus \mathsf{ipad} \mid \mid M)),$

- opad and ipad are constant paddings.
- The secret key is manipulated twice:
 - $\bar{k} \oplus \text{opad}$,
 - $\bar{k} \oplus \text{ipad}$.

The Side Channel Leakage The cryptographic target : HMAC **Our attack features**

The Template Strategy

Loading a value in a register

• The hamming distance leaks.

Template-like Attack

- Software implementation with known assembly code.
 - The secret key k is split in I words of 32 bits each.
 - Each word is treated one after each other.
- EM near field techniques : template on hamming distance
 - 33 template traces for 33 possible hamming distances.
 - 1 operational EM trace to figure the hamming distance out.

Secret recovery

- Load operations \Rightarrow constraints on secret words.
- The whole secret k is recovered with $l \times 2^{32}$ computations.

The Side Channel Leakage The cryptographic target : HMAC **Our attack features**

Attack validation

HMAC SHA-1 on a STRATIX FPGA (ALTERA) with a software implementation on a NIOS II.

P.A. Fouque, G. Leurent, D. Réal, F. Valette

Template attack on HMAC

The leakage on SHA-1 The leakage on HMAC The sketch of the attack

A (1) > A (1) > A

Goal of this section

Assumption

The attacker is able to figure out the hamming distance during a load operation.

Problematics

Is there enough loads in HMAC ?

The leakage on SHA-1 The leakage on HMAC The sketch of the attack

Detailed implementation

The message *m* is expanded in 80 words W_i with $0 < i \le 80$

- W_i is a 32-bit word.
- $W_i = m_i$ for $0 < i \le l$

the compression function : repeat 80 times

- P(A, B, C, D, E, W[i])
- switch (A,B,C,D,E)

Values manipulated during the first rounds of SHA-1 only on the first message words

- the internal value A₁ depend on m₀:
- A₁ leaks each time it is manipulated :
 - B_2 (copy), C_3 , D_4 and E_5 (after a rotation)

The leakage on SHA-1 The leakage on HMAC The sketch of the attack

2 Conclusions about SHA-1

1^{st} conclusion : recovering k is a recurrence problem

- The internal values for the 1^{st} call of P only depend on m_0 .
- The internal values for the 2^{nd} call of P only depend on m_1 and m_0 .
- The internal values for the *i*th call of *P* only depend on *m_j* with *j* < *i*.

From now, we just focus on m_0 .

Function P causes 8 load operations with m_0 -dependent values

• 3.5 bits of information for each load (hamming weight on 32 bits).

・ロト ・同ト ・ヨト ・ヨト

• $8 \times 3.5 = 28$ bits of constraint on $W[0] = m_0$.

The leakage on SHA-1 The leakage on HMAC The sketch of the attack

2 Conclusions about SHA-1

1^{st} conclusion : recovering k is a recurrence problem

- The internal values for the 1^{st} call of P only depend on m_0 .
- The internal values for the 2^{nd} call of P only depend on m_1 and m_0 .
- The internal values for the *i*th call of *P* only depend on *m_j* with *j* < *i*.

From now, we just focus on m_0 .

Function P causes 8 load operations with m_0 -dependent values

• 3.5 bits of information for each load (hamming weight on 32 bits).

・ロト ・同ト ・ヨト ・ヨト

• $8 \times 3.5 = 28$ bits of constraint on $W[0] = m_0$.

The leakage on SHA-1 The leakage on HMAC The sketch of the attack

2 Conclusions about SHA-1

1^{st} conclusion : recovering k is a recurrence problem

- The internal values for the 1^{st} call of P only depend on m_0 .
- The internal values for the 2^{nd} call of P only depend on m_1 and m_0 .
- The internal values for the *i*th call of *P* only depend on *m_j* with *j* < *i*.

From now, we just focus on m_0 .

Function P causes 8 load operations with m_0 -dependent values

• 3.5 bits of information for each load (hamming weight on 32 bits).

• $8 \times 3.5 = 28$ bits of constraint on $W[0] = m_0$.

The leakage on SHA-1 The leakage on HMAC The sketch of the attack

But the key is manipulated twice in HMAC

- $m = \overline{k} \oplus \text{ipad or } m = \overline{k} \oplus \text{opad.}$
- The secret key is used twice in the HMAC construction: it is used in the inner hash function as H(k̄ ⊕ ipad) and in the outer hash function as H(k̄ ⊕ opad).
- $28 \times 2 > 32$ bits of constraints on k_0 .

The leakage on SHA-1 The leakage on HMAC The sketch of the attack

SCA and the resulting Cryptanalysis

The Side Channel Analysis

- Spy the register load operation with EM techniques.
- Find out the hamming distance between 2 consecutive register values.
- Deduce the hamming weight of internal values computed by the compression function.

Cryptanalysis

- SCA gives constraints on hamming weights of words of $\bar{k} \oplus$ ipad and $\bar{k} \oplus$ opad.
- Constraints on (k̄ ⊕ ipad); and (k̄ ⊕ opad); with 0 ≤ i < l depend on k_j with 0 ≤ j < i
- Find every k_i , one after each other.

The leakage on SHA-1 The leakage on HMAC The sketch of the attack

SCA and the resulting Cryptanalysis

The Side Channel Analysis

- Spy the register load operation with EM techniques.
- Find out the hamming distance between 2 consecutive register values.
- Deduce the hamming weight of internal values computed by the compression function.

Cryptanalysis

- SCA gives constraints on hamming weights of words of $\bar{k} \oplus$ ipad and $\bar{k} \oplus$ opad.
- Constraints on (k̄ ⊕ ipad)_i and (k̄ ⊕ opad)_i with 0 ≤ i < l depend on k_j with 0 ≤ j < i
- Find every k_i , one after each other.

The leakage on SHA-1 The leakage on HMAC The sketch of the attack

Summary of the attack

- Each call to the function *P* induces 8 load operations of secret dependent values.
- Measuring the hamming distance gives 3.5 bits of information.
- If the values are sufficiently independent : 8 × 3.5 = 28 bits of constraint on W[i].
- Information on $ar{k} \oplus {
 m ipad}$ and on $ar{k} \oplus {
 m opad}$
- Enough information to guess k recursively by 32 bits and check if the guess is compliant with the hamming weight measured on each call of P.
- A key of size 32 \times / bits will be figured out with / \times 2^{32} tries

• The algorithm still works if there is some errors in the measurement (less than 1.5 bits).

The whole leakage The hamming distances involved

A (1) > A (1) > A

Goal of this section

Problematics

Is the attacker able to figure out the hamming distance during a load operation?

The whole leakage The hamming distances involved

HMAC implementation

Each call to the compression function is followed by a sleep of $100 \mu s$.

The whole leakage The hamming distances involved

When one's should look at?

The instruction

ldw R2 (80) fp

corresponds to the loading of W[0] in the register R2.

• CEMA on this instruction in order to localize the proper clock cycle.

The whole leakage The hamming distances involved

Extremal hamming distances

P.A. Fouque, G. Leurent, D. Réal, F. Valette

Template attack on HMAC

The whole leakage The hamming distances involved

Near hamming distances

P.A. Fouque, G. Leurent, D. Réal, F. Valette

Template attack on HMAC

Cost of the attack

Template profiling stage

- Around 20000 traces.
- A few CEMAs to time localize instructions.

Template operational stage

- 1 trace.
- $\bullet~4\times2^{32}$ on SHA-1 guesses to retrieve the whole 128-bit key .
- Tolerate an error of 1.5 bit.

Conclusion

Very efficient attack

- First attack which allow to retrieve the key on HMAC.
- Practical experiments have been done for validation.
- Only one curve is needed on a non-protected implementation.

< ∃ >

Logic countermeasure

• Precharging the target register with a random value.

Thanks for your attention

P.A. Fouque, G. Leurent, D. Réal, F. Valette Template attack on HMAC

3

Do you have any questions ?

P.A. Fouque, G. Leurent, D. Réal, F. Valette Template attack on HMAC

・ 同 ト ・ ヨ ト ・ ヨ