An Efficient Method for Random Delay Generation in Embedded Software

Jean-Sébastien Coron Ilya Kizhvatov

CHES 2009, Lausanne, Switzerland

Outline

- 1 About Random Delays as a Countermeasure
- Existing Methods for Random Delay Generation in Software
- The New Method
- Efficiency Comparison Between the Methods

Outline

- 1 About Random Delays as a Countermeasure

Effect

- Timing attacks: **noise in time domain**
- DPA attacks: smeared correlation peak [Clavier et al. CHES'00], [Mangard CT-RSA'04]
- Fault attacks: decreased fault injection precision [Amiel et al. FDTC'06]

Hardware

About Random Delays

- random process interrupts (RPI) [Clavier et al. CHES'00]
- gate-level delays [Bucci et al. ISCAS'05], [Lu et al. FPT'08]

Software (this work)

dummy loops [Benoit and Tunstall WISTP'07]

```
...

1d RO, RND
dummyloop:
dec RO
brne dummyloop
...
```

Outline

- Existing Methods for Random Delay Generation in Software

Plain Uniform Delays (PU)

- individual delays are independent and uniform
- $\blacksquare \Rightarrow S_N$ has Gaussian distribution

Desired properties of S_N

- larger variance to increase the attacker's uncertainty
- **smaller mean** to decrease performance penalty

Method of Benoit and Tunstall [WISTP'07] (BT)

- individual delays: uniform → pit-shaped to increase variance
- pit is asymmetric to reduce overhead
- individual delays still generated independently

In this example: σ^2 33% \uparrow , μ 20% \downarrow compared to PU

Limitation of Both Methods

Individual delays are **independent** with mean μ and variance σ^2

Central Limit Theorem

$$S_N \xrightarrow{N} \mathcal{N}(N\mu, N\sigma^2)$$

The **only** way to escape: generate delays **non-independently**

Outline

- The New Method

algorithm execution

- insert a long uniform delay in the beginning
 - can be removed like in [Nagashima et al. ISCAS'07]

- insert a long uniform delay in the beginning
 - can be removed like in [Nagashima et al. ISCAS'07]

The New Method 0000

- cut it into equal pieces and distribute along the execution
 - the cumulative sum is strictly uniform
 - all delays have identical duration

The New Method 0000

- insert a long uniform delay in the beginning
 - can be removed like in [Nagashima et al. ISCAS'07]
- cut it into equal pieces and distribute along the execution
 - the cumulative sum is strictly uniform
 - all delays have identical duration
- add small variation to individual delays
 - the cumulative sum is almost uniform

Individual delay length

Floating mean: More Formally

Floating Mean: Distribution

$$E(S_N) = \frac{Na}{2}$$
, $Var(S_N) = N^2 \cdot \frac{(a-b+1)^2 - 1}{12} + N \cdot \frac{b^2 + 2b}{12}$

The New Method 0000

Floating Mean: Distribution

$$E(S_N) = \frac{Na}{2}$$
, $Var(S_N) = N^2 \cdot \frac{(a-b+1)^2 - 1}{12} + N \cdot \frac{b^2 + 2b}{12}$

The New Method 0000

Floating Mean: Tradeoff

- $b/a \rightarrow 0$: individual delays within a trace have small variation, cumulative sum is almost uniformly distributed
- $b/a \rightarrow 1$: plain uniform delays, cumulative sum tends to normal distribution

1 delay within an execution

10 delays

Outline

- Efficiency Comparison Between the Methods

Our Criterion

- what performance overhead is required to achieve the given variation of the sum of N delays
- use **coefficient of variation** σ/μ

Plain uniform	Benoit-Tunstall	Floating mean		
$\frac{1}{\sqrt{3N}}$	$rac{\sigma_{ ext{BT}}}{\mu_{ ext{BT}}} \cdot rac{1}{\sqrt{\textit{N}}}$	$\frac{\sqrt{N((a-b+1)^2-1)+b^2+2b}}{a\sqrt{3N}}$		

Our Criterion

- what performance overhead is required to achieve the given variation of the sum of N delays
- use **coefficient of variation** σ/μ

Plain uniform	Benoit-Tunstall	Floating mean		
$\Theta\left(\frac{1}{\sqrt{N}}\right)$	$\Theta\left(\frac{1}{\sqrt{N}}\right)$	$\Theta(1)$		

Efficiency of the methods against the number of delays in S_N

Distribution of S_{100} for the same performance overhead

Practical Implementation: Details

- AES-128 on Atmel ATmega16
- 10 delays per round, 3 dummy rounds at start/end
- same performance overhead for all methods
- no other countermeasures
- CPA attack [Brier et al. CHES'04]

Practical Implementation: Results

	ND	PU	ВТ	FM
μ , cycles	0	720	860	862
σ , cycles	0	79	129	442
σ/μ	_	0.11	0.15	0.51
CPA, traces	50	2500	7000	45000

Conclusion

Our result

- a **new method** for random delay generation in embedded software
- more efficient and secure than existing methods

Conclusion

Our result

- a **new method** for random delay generation in embedded software
- more efficient and secure than existing methods

Not covered in this talk

lightweight implementation

Updated version of the paper: ePrint 2009/419