
Reproducing and benchmarking FPGA designs

Saar Drimer
http://www.cl.cam.ac.uk/~sd410

300 350 400 450 500 550
0

2

4

6

8

10

12

co
u
n
t

AES128 single instance (V5 LX110)

300 350 400 450 500 550
0

2

4

6

8

10

12

co
u
n
t

AES128 four chained instances (V5 LX110)

RAM

8

RAM

RAM

RAM

32

8 8 8

24

plaintext

32

key

32

32

32

32

ciphertext

Col 0

Col 1

Col 2

Col 3

128128

32
128

Col 0

300 350 400 450 500 550
0

2

4

6

8

10

12

co
u
n
t

AES128 single instance (V5 LX110)

300 350 400 450 500 550
0

2

4

6

8

10

12

co
u
n
t

AES128 single instance (V5 SX50T)

Computer Laboratory

CHES, Lausanne, Switzerland, 9 September 2009

http://www.cl.cam.ac.uk/~sd410


Is it possible to create a standard for hardware
benchmarking?

Very hard. Why?

• Technology: there are too many variables
(architecture, software, implementation options)

• Academic: no emphasis on reproducibility;
methodologies are hard to maintain; and general
acceptance of meaningless comparisons and
incomplete implementation data

Here’s what I think is the best we can do.



Comparing/benchmarking FPGA designs
considered harmful

We often see. . .

• inappropriate use of metrics (“throughput/slice”);

• implementations for different architectures compared;

• missing implementation and platform details;

• meaningless resource conversions (BRAM to logic);

• comparison to ASIC implementations; and

• comparison to industry offerings.

We almost never see. . . source code.



Should we get excited over a 10% performance
improvement?

Rarely is context given for modules, as the are implemented
unconstrained, leading to the most favorable results; these may be hard
to achieve in practice. Example case, an AES implementation:

RAM

8

RAM

RAM

RAM

32

8 8 8

24

plaintext

32

key

32

32

32

32

ciphertext

Col 0

Col 1

Col 2

Col 3

128128

32
128

Col 0



Variability can be huge, over 30% of the entire range;
constrained designs perform noticeably worse

300 350 400 450 500 550
0

2

4

6

8

10

12

co
u
n
t

AES128 single instance (V5 LX110)

300 350 400 450 500 550
0

2

4

6

8

10

12

co
u
n
t

AES128 four chained instances (V5 LX110)



Implementation on different devices from the same
family; which result is “correct” to report?

300 350 400 450 500 550
0

2

4

6

8

10

12

co
u
n
t

AES128 single instance (V5 LX110)

300 350 400 450 500 550
0

2

4

6

8

10

12

co
u
n
t

AES128 single instance (V5 SX50T)



My main point is. . .

Reproducible research
leads to

better benchmarking

I avoid “fair” because it is subjective; we know that not many comparison

methodologies are accepted by everyone. We need a methodology that is accepted as

reasonable by most – so it is not only used by its creators – and that is maintainable.



Let’s encourage reproducible results by grading
reproducibility during manuscript reviews

5 Fully reproducible: complete source code, simulation testbenches,
and compilation instructions are available with submission.

4 Fully reproducible later: as above, but authors commit to having
material available at publication time.

3 Limited reproducibility: (partial) source code is available but
requires significant effort to reproduce reported results.

2 Reproducible by redesign: description of the design is complete
and simple enough to reproduce without source code.

1 Unreproducible plus: description lacks sufficient information for
reproducing results, but implementation report files are available.
Or, some implementation conditions are missing.

0 Unreproducible: description lacks sufficient information for
reproducing results given any amount of effort.



Encouraging reproducible research will. . .

• (roughly) compensate for low originality scores;

• allow independent reproduction of results for verification;

• allow researchers to better deflect criticism of their designs;

• allow finding mistakes and omissions;

• promote sound coding and code maintenance practices; and

• allow reimplementation so comparisons make sense.

Reproducible results can have a greater contribution to the field
than unreproducible, yet more original, results

* Of course this evaluation criteria should only be used where it makes sense (such as
with all implementation papers).



Establishing an academic-industry committee to fix some
variables seems unavoidable – community effort

The long-term committee will define the following:

• benchmarking platforms from multiple vendors (FPGA type,
speed grade, size, etc.);

• benchmarking software tools and settings (PAR seeds, efforts,
optimization goals);

• concise information on how to compare designs well, as a guide
to implementers and manuscript reviewers;

• target goals (throughput, power, area, etc.) to avoid
unconstrained “best achievable case”; and

• a simple, architecture-agnostic HDL wrapper for modules under
test (this is the only code to be made available by the
committee. . . the rest is information).



Two comments on the committee

Since no benchmarking methodology “fits” all designs, adherence
to the committee guidelines should be optional. The availability of
source code gives implementers a way to re-implement and
compare designs in a meaningful way outside the defined
methodology.

The committee will have permanent roles – EDA vendor and FPGA
vendor representatives, and researchers – but temporary members, so
methodologies are kept up-to-date with technology and new hardware
generations.

* A long document describing the content of this presentation, together with
experimental results will (hopefully) be available in a short while.


