Low-Overhead Implementation of a Soft Decision Helper Data Algorithm for SRAM PUFs

Roel Maes¹, Pim Tuyls^{1,2}, Ingrid Verbauwhede¹ 1. COSIC, K.U.Leuven and IBBT 2. Intrinsic-ID, Eindhoven

1. Introduction

- 2. Key generation with SRAM PUFs
- 3. Toeplitz-based Universal Hashing
- 4. Implementation Results
- 5. Conclusion

Introduction

- Tampering attacks threaten secure key storage
- Traditional tampering countermeasures induce large overhead (cost/size/power/...)

 Need for low-overhead physical protection of sensitive data → PUFs

Workshop on Cryptographic Hardware and Embedded Systems, CHES 2009, Lausanne

- 1. Introduction
- 2. Key generation with SRAM PUFs
 - Related Work
 - Soft Decision Helper Data
 - Datapath Design
- 3. Toeplitz-based Universal Hashing
- 4. Implementation Results
- 5. Conclusion

Related work: The SRAM PUF

- Random manufacturing variability in ICs is a fact
- Power-up state of SRAM cells efficiently measures intrinsic device variability
 - > SRAM PUF [GKST-CHES07]
- (SRAM) PUF responses are *noisy* and *non-uniform* > fuzzy secret

Related work: Helper Data Algorithms

HDA or Fuzzy Extractor extracts a secure key from a fuzzy secret

• Efficient implementation possible [BGSST-CHES08]

SRAM PUF Response Characteristics

Soft Decision HDA

- Regular error-correcting algorithms assume fixed bit error probability for every bit
- Additional *reliability information* of every response bit is available
 - enables Soft-Decision error correction (SD)
 - improves efficiency of ECC algorithm

Soft Decision Error Correction

- Reliability information \rightarrow Log-likelihood ratio
- Soft-Decision Maximum Likelihood Decoding (SDML)
 - exponential complexity in code dimension
 - ok for repetition codes
- Generalized Multiple Concatenated decoding (GMC) of Reed-Muller Codes

SDML-decoding:

- SD-Repetition-Decode(L) = $\sum (L_i)$
- SD-Degenerate-Decode(L) = L

Soft-decision decoder: Datapath

- 1. Introduction
- 2. Key generation with SRAM PUFs
- 3. Toeplitz-based Universal Hashing
 - Related Work
 - Datapath Design
- 4. Implementation Results
- 5. Conclusion

Related Work: Toeplitz Universal Hash

- (2-)Universal Hash Family H = {h_i: A → B}_{i=1..n}
 ∀ a₁≠a₂ ∈ A and r ← [1,n]: **Pr**[h_r(a₁)=h_r(a₂)] ≤ |B|⁻¹
- Multiplication with random Toeplitz matrix is Universal Hash → yields efficient LFSR-based implementation [Krawczyk-Crypto94]
 - Straightforward implementation not optimized for FPGA
 - e.g. if |Message| = 64 bit and |Hash| = 128 bit then: 128-bit LFSR + 64-bit SR + 128-bit accumulator = 320 flip-flops = at least 160 FPGA slices

Toeplitz Hash: Datapath

 Optimize for FPGA: use resource-efficient shift registers based on Look-up-tables (LUTs)

Workshop on Cryptographic Hardware and Embedded Systems, CHES 2009, Lausanne

- 1. Introduction
- 2. Key generation with SRAM PUFs
- 3. Toeplitz-based Universal Hashing
- 4. Implementation Results
- 5. Conclusion

Implementation Results

- Implemented on Xilinx Spartan 3E-500 FPGA
- Compare with best results from [BGSST-CHES2008]
 - Setting:

- Average response bit error probability: 15%
- Min-entropy of response bits: 78%
- Extract 128-bit key

- Results:

	Proposed SD-HDA Implementation	[BGSST-CHES2008] PUF-optimized DP	[BGSST-CHES2008] HDA-optimized DP
HDA size (slices)	237	≥ 907	≥ 429
Cycles	10298	≥ 24024	≥ 29925
Performance	205µs @ 50.2MHz	159μs @ 151.5MHz	171µs @ 175.4MHz
SRAM PUF size	1536 bit	3696 bit	6160 bit
Helper Data length	13952 bit	3824 bit	6288 bit

- 1. Introduction
- 2. Key generation with SRAM PUFs
- 3. Toeplitz-based Universal Hashing
- 4. Implementation Results
- 5. Conclusion

Conclusion

- PUF-based secret key storage is very appealing, but *implementation overhead* should be small!
- Efficient Soft-Decision Decoder reduces minentropy loss of HDA → *smaller PUF (-58.4%)*
- Using FPGA-optimized shift registers significantly reduces implementation cost of Universal Hash
 → smaller HDA (-44.8%)
- Increased Helper Data length and more effort during enrollment are *trade-offs*

Thank you!