Fault Attacks on RSA Signatures with Partially Unknown Messages

Jean-Sébastien Coron¹ Antoine Joux² Ilya Kizhvatov¹ David Naccache³ Pascal Paillier⁴

¹Université du Luxembourg

²DGA and Université de Versailles

³École Normale Supérieure

⁴CryptoExperts

CHES 2009, Lausanne, Switzerland

UNIVERSITÉ DE VERSAILLES SAINT-QUENTIN-EN-YVELINES

Fault attacks on RSA with CRT	Our Basic Attack	Attack Extensions	Experimental Results	Conclusion
0000	0000	000	00000	

- 1 Fault attacks on RSA with CRT
- 2 Our Basic Attack on ISO/IEC 9796-2
- 3 Attack Extensions
- 4 Experimental Results

Fault attacks on RSA with CRT	Our Basic Attack	Attack Extensions	Experimental Results	Conclusion

1 Fault attacks on RSA with CRT

- 2 Our Basic Attack on ISO/IEC 9796-2
- 3 Attack Extensions
- 4 Experimental Results

RSA with Chinese Remaindering (RSA-CRT)

Modulus N = pq, key pair (e, d), message m, padding function μ Signing:

1
$$\sigma_p = \mu(m)^d \mod p$$

2 $\sigma_q = \mu(m)^d \mod q$
3 recombination: $\sigma = CRT(\sigma_p, \sigma_q) = \mu(m)^d \mod N$
/erification: $\sigma^e = \mu(m) \mod N$

CRT gives up to $4 \mathsf{x}$ speedup compared to the straightforward RSA implementation

The Bellcore Attack on RSA-CRT [Boneh et al. '96]

Signing

1
$$\sigma_p = \mu(m)^d \mod p$$

2 $\sigma'_q \neq \mu(m)^d \mod q \longleftarrow$ **fault**
3 $\sigma' = CRT(\sigma_p, \sigma_q)$ faulty signature
derification: $\sigma'^e = \mu(m) \mod p \ \sigma'^e \neq \mu(m)$

Verification: $\sigma'^e = \mu(m) \mod p$, $\sigma'^e \neq \mu(m) \mod q$

$$\Longrightarrow \gcd(\sigma'^e - \mu(m) \bmod N, N) = p$$

Applies to

- any deterministic RSA padding Example: FDH $\sigma = H(m)^d \mod N$, $H : \{0, 1\}^* \mapsto \mathbb{Z}_N$
- probabilistic signature schemes where the randomizer r is sent along with the signature Example: PFDH $\sigma = H(m \parallel r)^d \mod N$

The Fault Attacker's Deadlock

Partially-Known Messages

Example: $\sigma = (m \| r)^d \mod N$

 $\textbf{\textit{r}}$ is a random nonce not sent along with σ

Deadlock: given σ' , the attacker only gets the **faulty** padded message σ'^e and therefore can neither retrieve r nor infer (m||r). So he/she cannot compute

$$gcd(\sigma'^e - (m \| r) \mod N, N) = p$$

- inducing faults in many signatures does not help since different r values are used in successive signatures
- short r can be guessed by exhaustive search

The New Result

Extension of the Bellcore attack to a large class of partially known message configurations, in particular to ISO/IEC 9796-2

Overcoming the deadlock

- recovering the unknown message part (UMP) under certain conditions on the size of the unknowns
- extensions to multiple UMP's and multiple faulty signatures

Fault attacks on RSA with CRT	Our Basic Attack	Attack Extensions 000	Experimental Results 00000	Conclusion

1 Fault attacks on RSA with CRT

2 Our Basic Attack on ISO/IEC 9796-2

3 Attack Extensions

4 Experimental Results

The ISO/IEC 9796-2 Standard

ISO/IEC 9796-2 encoding of $m = m[1] \parallel m[2]$

 $\mu(m) = \mathsf{6A}_{\mathsf{16}} \parallel m[1] \parallel H(m) \parallel \mathsf{BC}_{\mathsf{16}}$

Variant used in EMV

$$m[1] = \alpha \parallel \mathbf{r} \parallel \alpha', \qquad m[2] = \text{DATA}$$

r is unknown to the adversary. The encoded message is

 $\mu(m) = 6A_{16} \| \alpha \| r \| \alpha' \| H(\alpha \| r \| \alpha' \| \text{DATA}) \| BC_{16}$

The total number of unknown bits in $\mu(m)$ is $k_r + k_h$

Fault Attack on Partially-Known Message ISO/IEC 9796-2

Let's represent the message as

$$\mu(m) = t + r \cdot 2^{n_r} + H(m) \cdot 2^8$$

where t is a known value, both r and H(m) are unknown. After a fault, we have

$$\sigma^{\prime e} = t + r \cdot 2^{n_r} + H(m) \cdot 2^8 \mod p$$

Then (r, H(m)) must be a solution of the equation

$$a+b \cdot x + c \cdot y = 0 \mod p$$

where $a = t - \sigma'^e \mod N$, $b = 2^{n_r}$ and $c = 2^8$ are known.

Fault Attack on Partially-Known Message ISO/IEC 9796-2

Now we are left with solving

 $a+b \cdot x + c \cdot y = 0 \mod p$

that admits a small root $(x_0, y_0) = (r, H(m))$. However p is unknown.

- apply the method of [Herrmann and May ASIACRYPT'08] (originally for factoring an RSA modulus N = pq when some blocks of p are known)
- the method is based on the Coppersmith's technique for finding small roots of polynomial equations
- in turn, Coppersmith technique uses LLL to obtain (x_0, y_0)
- finally, given (x_0, y_0) , recover $\mu(m)$ and factor N by GCD

Bounds on UMP size

For a balanced RSA modulus from [Herrmann and May ASIACRYPT'08] we get

$$\gamma + \delta \leq \frac{\sqrt{2} - 1}{2} \cong 0.207$$

where $\gamma = k_r/k$, $\delta = k_h/k$, k being the modulus size

Example: for 1024-bit RSA the total size of the unknowns x_0 and y_0 can be at most 212 bits, so for ISO/IEC 9796-2 with $k_h = 160$ the size of randomizer r can be as large as 52 bits

11/23

Fault attacks on RSA with CRT	Our Basic Attack 0000	Attack Extensions	Experimental Results 00000	Conclusion

- 1 Fault attacks on RSA with CRT
- 2 Our Basic Attack on ISO/IEC 9796-2
- 3 Attack Extensions
- 4 Experimental Results

12/23

Attack Extensions

- several disjoint UMP blocks in the encoding function
- two faults modulo different factors (one modulo p and one modulo q)
- two or more faults modulo the same prime factor

Several Unknown Bits Blocks

Padding scheme

 $\mu(m) = 6A_{16} \| \alpha_1 \| r_1 \| \alpha_2 \| r_2 \| \cdots \| \alpha_n \| r_n \| \alpha_{n+1} \| H(m) \| BC_{16}$

Bound

Using the extended result of [Herrmann and May '08], we get

$$\sum_{i=1}^n \gamma_i \leq \frac{1 - \ln 2}{2} \cong 0.153$$

for a balanced RSA modulus and a large number of blocks n

Limitation

Runtime increases **exponentially** with n

Two Faults Modulo Different Factors

Having one signature incorrect mod p and the other incorrect mod q, we get

$$\times \frac{a_0 + b_0 \cdot x_0 + c_0 \cdot y_0}{a_1 + b_1 \cdot x_1 + c_1 \cdot y_1} = 0 \mod p}{a_0 a_1 + \ldots + c_0 c_1 \cdot y_0 y_1} = 0 \mod N}$$

Can be solved by linearization under the bound

$$\gamma + \delta \leq \frac{1}{6} \cong 0.167$$

- this attack is significantly faster than the basic one
- the 16.7% bound is likely to lend itself to further improvements using Coppersmith's technique

Several Faults Modulo the Same Factor

Extension of Coppersmith's technique to multiple equations

$$f_u(x_u, y_u) = a_u + x_u + c_u y_u, \quad 1 \le u \le \ell$$

coming from ℓ successive faults

Coron, Joux, Kizhvatov, Naccache, Paillier Fault Attacks on RSA Signatures with Partially Unknown Messages

Fault attacks on RSA with CRT	Our Basic Attack 0000	Attack Extensions 000	Experimental Results	Conclusion

- 1 Fault attacks on RSA with CRT
- 2 Our Basic Attack on ISO/IEC 9796-2
- 3 Attack Extensions
- 4 Experimental Results

17/23

Fault attacks on RSA with CRT	Our Basic Attack	Attack Extensions	Experimental Results	Conclusion
			• 00 00	

Simulation

Simulation parameters

- H = SHA-1, *i.e.* $k_h = 160$
- 1024-, 1536- and 2048-bit RSA
- LLL implementation: SAGE
- standard 2 GHz Intel laptop

18/23

Single-Fault Attack Simulations

modulus size k	UMP size k_r	runtime
1024	6	4 minutes
1024	13	51 minutes
1536	70	39 seconds
1536	90	9 minutes
2048	158	55 seconds

exhausting a 13-bit randomizer took 0.13 seconds

the attack becomes more efficient for larger moduli

Multiple-Fault Simulations

- three faulty signatures
- $\gamma + \delta \leq 0.204$

modulus size k	UMP size k _r	runtime
1024	40	49 seconds
1536	150	74 seconds
2048	250	111 seconds

- multiple-fault attacks with three faults are more efficient than single-fault attacks
- exhausting a 40-bit randomizer would take about a year on the same PC

Physical Fault Injection

- unprotected 1536-bit RSA-CRT on ATmega128 (running time several minutes at 7.68 MHz)
- spike (sag) attack [Schmidt FDTC'08]
- 40 ns cut-off in power supply using FPGA
- recovering factorization of N from the faulty signature with our basic attack

Before Concluding: Another Practical Application

PKCS#1 v1.5

$$\mu(m) = 0001_{16} \parallel \underbrace{\text{FF}_{16} \dots \text{FF}_{16}}_{k_1 \text{ bytes}} \parallel 00_{16} \parallel T \parallel H(m)$$

- T is a known sequence of bytes
- k_1 adjusted to make $\mu(m)$ have the same size as the modulus

With the single unknown the bound is $\delta < 0.25$, therefore for the 2048-bit modulus and H =SHA-512 the modulus can be factored with a single faulty signature even when the signed message is **totally unknown**

Fault attacks on RSA with CRT	Our Basic Attack 0000	Attack Extensions	Experimental Results 00000	Conclusion

Conclusion

- a novel practical attack on RSA-CRT with partially unknown messages
- particularly applicable to EMV and PKCS#1 v1.5 padding schemes
- not applicable to PSS [Coron and Mandal, ASIACRYPT'09]

Extended version of the paper: ePrint 2009/309