Sponge-based pseudorandom number generators

Sponge-based
pseudorandom number generators

Guido BERTONI! Joan DAEMEN!?
Michaél PEETERS? Gilles VAN AsscHE!

1STMicroelectronics

2NXP Semiconductors

CHES, Santa Barbara, CA
August 17-20, 2010

Sponge-based pseudorandom number generators

Outline

The sponge construction

=

Sponge-based PRNG

=

Recent extensions and other applications

> |

Building lightweight implementations

|

Improved security bounds

Building implementations that are even lighter

Conclusions

~ |

Sponge-based pseudorandom number generators

Lthe sponge construction

The sponge construction

Pg P P, P3 20 zZ1
Ininininir
r|]| 0 : : : : E
R R R
cl| O :
_/ _/ _/ Y

absorbing : squeezing

® f: a b-bit permutation with b =r + ¢

m Operating mode:

m One absorbing phase
m One squeezing phase

z2

Sponge-based pseudorandom number generators

Lthe sponge construction

The sponge construction: security

Py P P P 20 zZ1
i
r|| 0 & ; ; ; E
R
c|l| O :
\ U
|

absorbing | squeezing

z2

m Indifferentiability proof [Bertoni et al., Eurocrypt 2008

m Provably secure against attacks with < 2¢/2 calls to f
m Proof assumes f is random permutation

m = Sponge secure if f has no exploitable properties

Sponge-based pseudorandom number generators

L Sponge-based PRNG

Sponge-based PRNG: the idea

‘2P3 ‘z 24
A 1 s

m Feed seeding (and reseeding) material P;
m Fetch pseudo-random strings z;

m Features:

m finvertible = no entropy loss
m Forward secrecy: chop state by feeding back z;

Sponge-based pseudorandom number generators

L Sponge-based PRNG

Sponge-based PRNG: the idea

zZ2 23 24

m Feed seeding (and reseeding) material P;
m Fetch pseudo-random strings z;

m Features:

m finvertible = no entropy loss
m Forward secrecy: chop state by feeding back z;

Sponge-based pseudorandom number generators

L Sponge-based PRNG

Sponge-based PRNG: the idea

0 23 24

G
c

m Feed seeding (and reseeding) material P;
m Fetch pseudo-random strings z;

m Features:

m finvertible = no entropy loss
m Forward secrecy: chop state by feeding back z;

Sponge-based pseudorandom number generators

L Sponge-based PRNG

Sponge-based PRNG: security

‘2133 ‘z 24
A 1 s

m Multiple absorbing and squeezing phases...?!?

m Is it secure?
m What would be the model?

Sponge-based pseudorandom number generators
Our reference model for PRNG

fetch(ly), fetch(ls), ..., fetch(l,)

< feed(o)

? fetch(l) RO Lo

E fee-clil(a) truncated to
li+lo+ ..+, bits

m Using a public random oracle
m Input: sequence of feed and fetch requests
m Output of a fetch request
m must depend on all seed material ¢; thus far

m may depend on the fetch requests
m RO(e(history)), where e maps to Z;

Sponge-based pseudorandom number generators

L Sponge-based PRNG

Sponge-based PRNG revisited

20 21 22 z3 24

—/ A T 7

m Can be modeled as multiple calls to a sponge function

Sponge-based pseudorandom number generators

L Sponge-based PRNG

Sponge-based PRNG: first call

P(] P1 Z0

T

|
|
7]
|
|

—/

absorbing : squeezing

m z, output of first call

Sponge-based pseudorandom number generators

L Sponge-based PRNG

Sponge-based PRNG: second call

Py P P, Z1 Z2

S
)

.
)

.
==

A N

absorbing : squeezing

m 7,7, output of second call

Sponge-based pseudorandom number generators

L Sponge-based PRNG

Sponge-based PRNG: third call

PO Pl P2 0 P3 z3 24

—/ —/ —/ —/ ~

absorbing : squeezing

m 737, output of third call

Sponge-based pseudorandom number generators

L Sponge-based PRNG

Sponge-based PRNG: equivalent representation

fetch(ly), fetch(ly), ..., fetch(l,)

< feed(o)

.

5 fetch(l) I Sponge ~

B feed(o) truncated to .
l1+lo+.. +1, bits

m Sponge function takes the place of the random oracle
m Indifferentiability — secure if f has no exploitable
properties

Sponge-based pseudorandom number generators

L Recent extensions and other applications

Recent extension: the duplex mode

m Duplex construction [Bertoni et al., Duplexing the sponge, ..., SHA-3
workshop 2010]
m Sibling to sponge construction, with equivalent security
m Object with input and output in each call

m Applications include

m Reseedable PRNG
m Single-pass authenticated encryption
m Overwrite mode

Sponge-based pseudorandom number generators

L Building lightweight implementations

Building lightweight implementations

m Width of permutationf: b =r + ¢
m Trade-off between security and efficiency:
m Security level: c/2 bits
m Efficiency: r pseudorandom/seed bits per call to f

m Optimum trade-off depends on the usage scenarios
m Example 1: QUARK [Aumasson et al., QUARK, ..., CHES 2010]

m Example 2: KEccAk supports : b € {25, 50,100...1600}
m Security level 80 bits implies ¢ = 160
m b = 200 gives rate r = 40
m Compact in hardware [Bertoni et al., KEccak main doc. 2.1]

Sponge-based pseudorandom number generators

L Improved security bounds

New security bounds for sponge functions

B Resistance against state recovery [This paper]
m Expected workload against passive adversaries: 2¢
m Expected workload against active adversaries: 2¢/data
B [Bertoni et al., On the security of the keyed sponge construction, SHA-3
workshop 2010]

m Generalization of results of this paper
m Indistinguishable from random oracle if data x time < 2¢°!

Sponge-based pseudorandom number generators

L Building implementations that are even lighter

Building implementations that are even lighter

m Sponge-based PRNG: passive adversary

m Security level: c bits

m Efficiency: r pseudorandom/seed bits per call to f
m Example with Keccak

m Security level 80 bits implies c = 80 rather than ¢ = 160
m b = 200 gives rate r = 120: speed x3
B b = 100 gives rate r = 20: area divided by 2

Sponge-based pseudorandom number generators

L Building implementations that are even lighter

..and secure against side channel attacks

[Bertoni et al., Building power analysis resistant implementations of KECCAK,
SHA-3 workshop 2010]
m Secret sharing for robust protection against DPA
m Suited for functions of low algebraic degree
m Keccak round function: degree 2 in GF(2)
m In software: two shares
m Roughly doubles RAM usage and computation time

m In dedicated hardware: three shares
m Trade-off between area and throughput
B area x4: no loss of throughput
B area x2: maximum throughput divided by 8

Sponge-based pseudorandom number generators

Conclusions

Conclusions

m Sponge functions are capable of all symmetric crypto
operations:

m Hashing, encryption, MAC, KDF, MGF (previously known)
m Reseedable PRNG and authenticated encryption (new)
m Permutation can replace block cipher as crypto primitive!
m Sponge functions are suitable for embedded devices

m Lightweight: QUARK and small-b KECCAK variants
m Hardened: protection against DPA

	The sponge construction
	Sponge-based PRNG
	Recent extensions and other applications
	Building lightweight implementations
	Improved security bounds
	Building implementations that are even lighter
	Conclusions

