
.

Sponge-based pseudorandom number generators

Sponge-based
pseudorandom number generators

Guido Bertoni1 Joan Daemen1

Michaël Peeters2 Gilles Van Assche1

1STMicroelectronics

2NXP Semiconductors

CHES, Santa Barbara, CA
August 17-20, 2010

.

Sponge-based pseudorandom number generators

Outline

1 The sponge construction

2 Sponge-based PRNG

3 Recent extensions and other applications

4 Building lightweight implementations

5 Improved security bounds

6 Building implementations that are even lighter

7 Conclusions

.

Sponge-based pseudorandom number generators

The sponge construction

The sponge construction

f: a b-bit permutation with b = r + c
Operating mode:

One absorbing phase
One squeezing phase

.

Sponge-based pseudorandom number generators

The sponge construction

The sponge construction: security

Indifferentiability proof [Bertoni et al., Eurocrypt 2008]
Provably secure against attacks with < 2c/2 calls to f
Proof assumes f is random permutation

⇒ Sponge secure if f has no exploitable properties

.

Sponge-based pseudorandom number generators

Sponge-based PRNG

Sponge-based PRNG: the idea

Feed seeding (and reseeding) material Pi
Fetch pseudo-random strings zi
Features:

f invertible ⇒ no entropy loss
Forward secrecy: chop state by feeding back zi

.

Sponge-based pseudorandom number generators

Sponge-based PRNG

Sponge-based PRNG: the idea

Feed seeding (and reseeding) material Pi
Fetch pseudo-random strings zi
Features:

f invertible ⇒ no entropy loss
Forward secrecy: chop state by feeding back zi

.

Sponge-based pseudorandom number generators

Sponge-based PRNG

Sponge-based PRNG: the idea

Feed seeding (and reseeding) material Pi
Fetch pseudo-random strings zi
Features:

f invertible ⇒ no entropy loss
Forward secrecy: chop state by feeding back zi

.

Sponge-based pseudorandom number generators

Sponge-based PRNG

Sponge-based PRNG: security

Multiple absorbing and squeezing phases…?!?
Is it secure?
What would be the model?

.

Sponge-based pseudorandom number generators

Sponge-based PRNG

Our reference model for PRNG

Using a public random oracle

Input: sequence of feed and fetch requests
Output of a fetch request

must depend on all seed material σi thus far
may depend on the fetch requests
ℛ𝒪(e(history)), where e maps to Z∗

2

.

Sponge-based pseudorandom number generators

Sponge-based PRNG

Sponge-based PRNG revisited

Can be modeled as multiple calls to a sponge function

.

Sponge-based pseudorandom number generators

Sponge-based PRNG

Sponge-based PRNG: first call

z0 output of first call

.

Sponge-based pseudorandom number generators

Sponge-based PRNG

Sponge-based PRNG: second call

z1z2 output of second call

.

Sponge-based pseudorandom number generators

Sponge-based PRNG

Sponge-based PRNG: third call

z3z4 output of third call

.

Sponge-based pseudorandom number generators

Sponge-based PRNG

Sponge-based PRNG: equivalent representation

Sponge function takes the place of the random oracle

Indifferentiability → secure if f has no exploitable
properties

.

Sponge-based pseudorandom number generators

Recent extensions and other applications

Recent extension: the duplex mode

Duplex construction [Bertoni et al., Duplexing the sponge, …, SHA-3
workshop 2010]

Sibling to sponge construction, with equivalent security
Object with input and output in each call

Applications include
Reseedable PRNG
Single-pass authenticated encryption
Overwrite mode

.

Sponge-based pseudorandom number generators

Building lightweight implementations

Building lightweight implementations

Width of permutation f: b = r + c
Trade-off between security and efficiency:

Security level: c/2 bits
Efficiency: r pseudorandom/seed bits per call to f

Optimum trade-off depends on the usage scenarios

Example 1: Quark [Aumasson et al., Quark, …, CHES 2010]

Example 2: Keccak supports : b ∈ {25, 50, 100 . . . 1600}
Security level 80 bits implies c = 160
b = 200 gives rate r = 40
Compact in hardware [Bertoni et al., Keccak main doc. 2.1]

.

Sponge-based pseudorandom number generators

Improved security bounds

New security bounds for sponge functions

Resistance against state recovery [This paper]

Expected workload against passive adversaries: 2c

Expected workload against active adversaries: 2c/data

[Bertoni et al., On the security of the keyed sponge construction, SHA-3
workshop 2010]

Generalization of results of this paper
Indistinguishable from random oracle if data × time ≤ 2c−1

.

Sponge-based pseudorandom number generators

Building implementations that are even lighter

Building implementations that are even lighter

Sponge-based PRNG: passive adversary
Security level: c bits
Efficiency: r pseudorandom/seed bits per call to f

Example with Keccak
Security level 80 bits implies c = 80 rather than c = 160
b = 200 gives rate r = 120: speed ×3
b = 100 gives rate r = 20: area divided by 2

.

Sponge-based pseudorandom number generators

Building implementations that are even lighter

…and secure against side channel attacks

[Bertoni et al., Building power analysis resistant implementations of Keccak,

SHA-3 workshop 2010]

Secret sharing for robust protection against DPA
Suited for functions of low algebraic degree
Keccak round function: degree 2 in GF(2)

In software: two shares
Roughly doubles RAM usage and computation time

In dedicated hardware: three shares
Trade-off between area and throughput
area ×4: no loss of throughput
area ×2: maximum throughput divided by 8

.

Sponge-based pseudorandom number generators

Conclusions

Conclusions

Sponge functions are capable of all symmetric crypto
operations:

Hashing, encryption, MAC, KDF, MGF (previously known)
Reseedable PRNG and authenticated encryption (new)

Permutation can replace block cipher as crypto primitive!
Sponge functions are suitable for embedded devices

Lightweight: Quark and small-b Keccak variants
Hardened: protection against DPA

	The sponge construction
	Sponge-based PRNG
	Recent extensions and other applications
	Building lightweight implementations
	Improved security bounds
	Building implementations that are even lighter
	Conclusions

