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Scalar, point and field arithmetic levels
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ECC: Basics
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� An elliptic curve E over a prime field Fp , p

by:  

E :  y2 = x3

where  a, b ∈ Fp (a = −3 for efficiency purposes)

Given a point P ∈ E(Fp) of order r and an integer 

multiplication as:

Q = [k]P = P + P +

� Scalar multiplication is the central/most time

� Security is based on the ECDLP problem:  given points 

� Only exponential attacks are known for solving ECDLP
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p > 3, in (short) Weierstrass form is given 

+ ax + b

3 for efficiency purposes)

and an integer k ∈ [1, r − 1], we define scalar 

+ … + P  (k times)

Scalar multiplication is the central/most time-consuming operation in ECC

Security is based on the ECDLP problem:  given points P and Q, find k

Only exponential attacks are known for solving ECDLP



ECC: Recent developments
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� Curve forms with faster arithmetic
An elliptic curve E over a prime field Fp , p

Bernstein et al. (2008):  

E :  ax2 + y2 = 1 + 

where  a, d ∈ Fp
*,  a ≠ d  (a = −1 for efficiency purposes)

� The Galbraith-Lin-Scott (GLS) method, Galbraith et al. (
Let E be an elliptic curve over Fp , s.t. the quadratic twist 

efficiently computable homomorphism  ψ(

Then:                                    [k]P = [k0]P

where  log k0 ≈ log k1 ≈  ½ log k

ECC: Recent developments
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p > 3, in Twisted Edwards form is given by,  

= 1 + dx2 y2

for efficiency purposes)

, Galbraith et al. (Eurocrypt 2009)
. the quadratic twist E’ of E(Fp2) has an 

(x,y) → (αx,αy),  ψ(P) = λP 

+ [k1](λP)



x86-64 based Processors
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Computers from laptop/desktop/server classes are rapidly adopting x86

(wordlength w = 64) 

Main features:
� 64-bit GPRs and operations with powerful multiplier  

� Deeply pipelined architectures (e.g., Intel Core 2 Duo: 15 stages)

� Aggressive out-of-order scheduling to exploit 

� Sophisticated branch predictors

Key observation:
As  w ↑ , (log p)/w ↓ , number of stages in pipeline gets larger and scheduling gets more 

“aggressive”, “negligible” operations/issues get significant: addition, subtraction, 

division/ multiplication by constants, pipeline stalls (by data dependencies) and branch 

mispredictions

64 based Processors
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Computers from laptop/desktop/server classes are rapidly adopting x86-64 ISA 

and operations with powerful multiplier  ⇒ favours Fp arithmetic

Deeply pipelined architectures (e.g., Intel Core 2 Duo: 15 stages)

order scheduling to exploit Instruction Level Parallelism (ILP)

 , number of stages in pipeline gets larger and scheduling gets more 

“aggressive”, “negligible” operations/issues get significant: addition, subtraction, 

division/ multiplication by constants, pipeline stalls (by data dependencies) and branch 



Approach
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� Bottom-up optimization of each layer of ECC computation taking into account 

architectural features of x86-64 based processors

� Best ECC algorithms (to our knowledge) for each layer are identified and optimized

� Three representative 64-bit processors for our analysis and tests:

� 1.66GHz Intel Atom N450 (netbook/notebook class)

� 2.66GHz Intel Core 2 Duo E6750 (desktop class)

� 2.6GHz AMD Opteron 252 (server/workstation class)

Patrick Longa                                                                                   5                            University of Waterloo

up optimization of each layer of ECC computation taking into account 

64 based processors

Best ECC algorithms (to our knowledge) for each layer are identified and optimized

bit processors for our analysis and tests:

/notebook class)

2.66GHz Intel Core 2 Duo E6750 (desktop class)

252 (server/workstation class)



Field Arithmetic
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Incomplete Reduction (IR), Yanik et al. (2002): 

Given a, b ∈ [0, p − 1], allow the result to stay in the range [0, 2

performing a complete reduction, where p < 2

w: wordlength)

� For maximal efficiency, select a pseudo-Mersenne

c small (i.e., c << 2w):

� Reduction after addition a + b :  discard carry bit in most significant word and then add 

� Subtraction does not require IR (already optimal!)

� However, other operations may benefit from IR:  addition between 

reduced and incompletely reduced numbers, multiplication by constant, division by 

constant,…

Field Arithmetic
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et al. (2002): 

1], allow the result to stay in the range [0, 2s − 1] instead of 

< 2s < 2p − 1, s = n.w (n: number of words,   

Mersenne prime  p = 2m – c, where m = s,       

:  discard carry bit in most significant word and then add c

Subtraction does not require IR (already optimal!)

However, other operations may benefit from IR:  addition between completely 

numbers, multiplication by constant, division by 



Field Arithmetic
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Conditional branches

� Modular operations are traditionally implemented with conditional branches

� Example:  addition

Given a, b ∈ [0, p − 1], execute a + b

� Condition is true  ~50%  in a random pattern 

� We’d better eliminate conditional branches in modular reduction. 

Two alternatives:

� Using predicated move instructions (e.g., cmov

� Using look-up tables and indexed indirect addressing

� Basic idea: perform reduction with 0 when it is not actually required

Field Arithmetic
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Modular operations are traditionally implemented with conditional branches

b.  If  a + b > p, then  a + b – p

Condition is true  ~50%  in a random pattern ⇒ worst “nightmare” of predictors

We’d better eliminate conditional branches in modular reduction. 

cmov in x86)

up tables and indexed indirect addressing

Basic idea: perform reduction with 0 when it is not actually required



Incomplete Reduction and Conditional branches 

Cost (in cycles) of 256-bit modular operations,  

⇒ Cost reductions using IR in the range 7% -

⇒ Cost reductions by eliminating conditional branches as high as 50%

⇒ Operations using IR are more benefited
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Modular operation
w/o

CB

with

CB

Sub 21 37

Add with IR 20 37

Add 25 39

Mult2 with IR 19 38

Mult2 24 38

Div2 with IR 20 36

Div2 25 39

Intel Core 2 Duo

Field Arithmetic
Incomplete Reduction and Conditional branches 

bit modular operations,  p = 2256 – 189 

- 41%

Cost reductions by eliminating conditional branches as high as 50%
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Cost reduction 

(%)

w/o

CB

with

CB

Cost reduction 

(%)

43% 16 23 30%

46% 13 21 38%

36% 20 23 13%

50% 10 19 47% 

37% 17 20 15%

44% 11 18 39%

36% 18 27 33%

Intel Core 2 Duo AMD Opteron

Field Arithmetic



“Contiguous” dependencies: RAW dependencies between successive field operations
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> addq %rcx,%r8

> movq %r8, 8

> adcq $0,%r9

> movq %r9, 16

> adcq $0,%r10

> movq %r10,24(%

> adcq $0,%r11

> Add(op1,op2,res1) > movq %r11,32(%

> Add(res1,op3,res2) > xorq %rax,%rax

> movq $0xBD,%rcx

> movq 8(%rdi

> addq 8(%rsi

> movq 16(%rdi

> adcq 16(%rsi

> movq 24(%rdi

> adcq 24(%rsi

> movq 32(%rdi

> adcq 32(%rsi

�

Field Operations Assembly instructions

Field Arithmetic

�

�

�

RAW dependencies between successive field operations
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%rcx,%r8

, 8(%rdx) 

$0,%r9

, 16(%rdx) 

$0,%r10

%r10,24(%rdx) 

$0,%r11

%r11,32(%rdx) 

rax,%rax

$0xBD,%rcx

rdi) ,%r8

rsi) ,%r8

rdi),%r9

rsi),%r9

rdi),%r10

rsi),%r10

rdi),%r11

rsi),%r11

Assembly instructions

Field Arithmetic

ρ : “distance” between  instructions 

“Ideal” non-superscalar CPU: 

Pipeline stalls for ∼(δwrite − ρ) cycles

δwrite : pipeline latency of write      

instruction



Field Arithmetic
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“Contiguous” dependencies  (Cont’d) 

We propose three solutions:

1. Field arithmetic scheduling  ⇒ execute other field operations while previous 

memory writings complete their pipeline latencies  

2. Merging point operations  ⇒ more possibilities for field operation rescheduling      

(it additionally reduces number of function calls)  

3. Merging field operations  ⇒ direct elimination of “contiguous” dependencies                               

(it additionally reduces memory reads/writes)

E.g.,  a – b – c (mod p),  a + a + a (mod p)  (as in other crypto libraries, MIRACL)

a – 2b (mod p),  merging of  a – b (mod

Field Arithmetic
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execute other field operations while previous 

memory writings complete their pipeline latencies  

more possibilities for field operation rescheduling      

(it additionally reduces number of function calls)  

direct elimination of “contiguous” dependencies                               

(it additionally reduces memory reads/writes)

)  (as in other crypto libraries, MIRACL)

(mod p)  and  (a – b) – 2c (mod p)



Field Arithmetic
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“Contiguous” dependencies  (Cont’d)    (X1,

“Unscheduled”                      Scheduled                             

> Sqr(Z1,t3) > Sqr(Z1,t3) 

> Add(X1,t3,t1) D > Sqr(Y1,t2)

> Sub(X1,t3,t3) > Add(X1,t3,t1)      

> Mult(t3,t1,t2) D > Sub(X1,t3,t3)  

> Mult3(t2,t1)         D > Mult3(t3,t0) 

> Div2(t1,t1) D > Mult(X1,t2,t4

> Mult(Y1,Z1,t3) > Mult(t1,t0,t3

> Sqr(Y1,t2) > Sqr(t2,t0) 

> Mult(t2,X1,t4) D > Div2(t3,t1)

> Sqr(t1,t3) > Mult(Y1,Z1,Z1

> Sub(t3,t4,X1) D > Sqr(t1,t2)

> Sub(X1,t4,X1) D > DblSub(t2,t4,X1)

> Sub(t4,X1,t3)     D > Sub(t4,X1,t2)    

> Mult(t3,t1,t4)    D > Mult(t1,t2,t4)  

> Sqr(t2,t0)     > Sub(t4,t0,Y1)   

> Sub(t4,t0,Y1)     D

Field Arithmetic
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,Y1,Z1) ← 2(X1,Y1,Z1)

“Unscheduled”                      Scheduled                             Scheduled and 
merged DBL-DBL       

> Sqr(Z1,t3) 

> Sqr(Y1,t2)

> Add(X1,t3,t1)      > Add(X1,t3,t1) 

> Sub(X1,t3,t3)  > Sub(X1,t3,t3) 

) D > Mult3(t3,t0)          D

(X1,t2,t4) > Mult(X1,t2,t4) 

(t1,t0,t3) > Mult(t1,t0,t3) 

> Sqr(t2,t0) 

> Div2(t3,t1)

(Y1,Z1,Z1) > Mult(Y1,Z1,Z1)

> Sqr(t1,t2) 

(t2,t4,X1) D > Sqr(Z1,t3)

> Sub(t4,X1,t2)    D > DblSub(t2,t4,X1)

(t1,t2,t4)  D > Sub(t4,X1,t2)  D

> Sub(t4,t0,Y1)   D > Add(X1,t3,t5)

> Mult(t1,t2,t4)

> Sub(X1,t3,t3)

> Sub(t4,t0,Y1) 

> Mult3(t3,t1) 

> Sqr(Y1,t2)

> …



“Contiguous” dependencies (Cont’d) 

Cost (in cycles) of point doubling,  p = 2256 –

⇒ Estimated reduction of 5% and 9% on AMD 

⇒ Less “aggressive” architectures are not greatly affected by “contiguous” dependencies 

Patrick Longa                                                                                  12                            

Point operation “Unscheduled”
Scheduled and 

merged

DBL 3390 3332

Relative reduction - 2% 

Estimated reduction for

[k]P
- 1%

Field Arithmetic

Intel Atom

189 

Estimated reduction of 5% and 9% on AMD Opteron and Intel Core 2 Duo, respect.  

Less “aggressive” architectures are not greatly affected by “contiguous” dependencies 

Patrick Longa                                                                                  12                            University of Waterloo

Scheduled and 
“Unscheduled”

Scheduled and 

merged
“Unscheduled”

Scheduled and 

merged

1115 979 786 726

- 12% - 8%

- 9% - 5%

Intel Core 2 Duo AMD Opteron

Field Arithmetic



Point Arithmetic
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Our choice of formulas: 

� Jacobian coordinates: (x, y) � (X/Z2, Y/Z3, 1),  (

DBL (a = −3)            

mDBLADD (Z2 = 1) 

DBLADD (Z2
2, Z2

� Extended Twisted Edwards coordinates: (x

(X : Y : Z : T) = {(λX, λY, λZ , λZ): λ ∈ Fp

DBL (a = −1)            

mDBLADD (Z2 = 1) 

DBLADD 

Point Arithmetic
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, 1),  (X : Y : Z) = {(λ2X, λ3Y, λZ): λ ∈ Fp
*}   

3)            ⇒ 4M + 4S

= 1) ⇒ 13M + 5S

2
3 cached)   ⇒ 16M + 5S

x, y) � (X/Z, Y/Z, 1, T/Z),  T = XY/Z

p
*}    

1)            ⇒ 4M + 3S

= 1) ⇒ 11M + 3S

⇒ 12M + 3S

Longa 2007

Hisil et al. 2008



Point Arithmetic
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Minimizing costs: 

� Trade additions for subtractions (or vice versa) by applying  

� Minimize constants and additions/subtractions by applying  

E.g., (X2,Y2,Z2) ← 2(X1,Y1,Z1) using Jacobian

A = 3(X1 + Z1
2)(X1 – Z1

2),  B = 4X1Y1
2                             

X2 = A2 – 2B

Y2 = A(B – X2) – 8Y1
4

Z2 = 2Y1Z1

� Most constants are eliminated

� If  1Mult > 1Sqr + 3“Add”, replace  Y1Z1

� See our database of formulas using Jacobian

http://patricklonga.bravehost.com/jacobian.html

Point Arithmetic
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Trade additions for subtractions (or vice versa) by applying  λ = −1 ∈ Fp
*

Minimize constants and additions/subtractions by applying  λ = 2−1 ∈ Fp
*

Jacobian coord.

2                             A = 3(X1 + Z1
2)(X1 – Z1

2)/2,  B = X1Y1
2

X2 = A2 – 2B

Y2 = A(B – X2) – Y1
4

Z2 = Y1Z1

by  [(Y1+Z1)
2 – Y1

2 – Z1
2]/2  

Jacobian coordinates:

http://patricklonga.bravehost.com/jacobian.html



Scalar Arithmetic
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1. Convert k to an efficient “window-based” representation, say  

where ki ∈ {0, 1, 3, 5, … , m}

In particular, we use width-w non-adjacent form (

between nonzero digits:

� If  m = 2w–1– 1, w ≥ 2 ∈ Z ⇒ traditional integral window, nonzero density  (

On-the-fly conversion algorithms that save memory are not good candidates here  

(too many function calls, and memory is not constrained)

⇒ we’d better convert k first and then execute evaluation stage

Scalar Arithmetic
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N-1

based” representation, say  k = ∑ ki 2i , 
i=0

adjacent form (wNAF) that insert (w–1) “0”-digits       

traditional integral window, nonzero density  (w+1)–1

fly conversion algorithms that save memory are not good candidates here  

(too many function calls, and memory is not constrained)

first and then execute evaluation stage



Scalar Arithmetic
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2. Precompute L = (m – 1)/2 non-trivial points {

Inversion is relatively expensive, 1I = 175M

� For Jacobian coord., use LM method without inversions, Longa and 

Cost = (5L+2)M + (2

which is the lowest cost in the literature

� For Twisted Edwards, compute  P + 2P + 2

3. Evaluate [k]P using a  double-and-doubleadd

� For both systems, w = 5 (L = 7) is optimal for 

Two main functions:  merged 4DBL and DBLADD 

Scalar Arithmetic
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trivial points {P, [3]P, [5]P, … , [m]P}              

Inversion is relatively expensive, 1I = 175M

., use LM method without inversions, Longa and Gebotys (2009): 

+2)M + (2L+4)S,

+ 2P + … + 2P using general additions

doubleadd algorithm

= 7) is optimal for bitlength(k) = 256 bits                             

Two main functions:  merged 4DBL and DBLADD 



GLS Method
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Field and Point Arithmetic:

� Similar techniques apply to Fp2 arithmetic

� Conditional branches can be avoided by clever choice of  

� “Contiguous” dependencies are more expensive (
avoided by rescheduling ⇒ scheduling at F

� More opportunities for merging field operations because of 

reduced operand size (more GPRs are available for intermediate computations)

E.g., a – 2b (mod p),  (a + a + a)/2 (mod p),  

merging of a + b (mod p) and a – b (mod

(mod p),  and merging of a + a (mod p

Patrick Longa                                                                                  17                            University of Waterloo

Conditional branches can be avoided by clever choice of  p  (e.g., p = 2127 – 1)

“Contiguous” dependencies are more expensive (n = 2 words), but more easily 
Fp2 and Fp levels

More opportunities for merging field operations because of Fp2 / Fp interaction and 

are available for intermediate computations)

),  a + b – c (mod p),  

(mod p),  merging of a – b (mod p) and c – d

p) and a + a + a (mod p) 



GLS Method
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Scalar Arithmetic:

� Recall that [k]P = [k0]P + [k1](λP) 

Use (fractional) wNAF to convert k0 and k1

⇒ Again, it is better to convert k0 and k1

� Precompute L = (m – 1)/2 non-trivial points {

Inversion is not so expensive, 1I = 59M

� For Jacobian coord., use LM method with 

Cost = 1I +(9L+1)M + (2

which is the lowest cost in the literature

� For Twisted Edwards, compute  P + 2P + 2

addition is only 1M more expensive than mixed addition)
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1:

first and then execute evaluation stage

trivial points {P, [3]P, [5]P, … , [m]P}              

., use LM method with one inversion, Longa and Miri (PKC 2008): 

+1)M + (2L+5)S,

+ 2P + … + 2P using general additions (general 

addition is only 1M more expensive than mixed addition)



GLS Method
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Scalar Arithmetic:  (Cont’d)

� Evaluate [k]P = [k0]P + [k1](λP) using interleaving

Möller (SAC 2001)

� For Jacobian coord., a fractional window L

� For Twisted Edwards, an integral window 

� Three main functions:  DBL, DBLADD and DBLADDADD
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interleaving, Gallant et al. (Crypto 2001) and 

L = 6 is optimal (bitlength(k) = 256 bits) 

For Twisted Edwards, an integral window w = 5 (L = 7) is optimal (bitlength(k) = 256 bits)

main functions:  DBL, DBLADD and DBLADDADD



Implementation Results
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� Implementation of variable-scalar-variable

� Mostly in C with underlying field arithmetic in assembly

� Plugged to MIRACL library [Scott]

� Four versions:

� Jacobian coordinates,  p = 2256–189:  jac256189

E /Fp :  y2 = x3 − 3x + b, with

#E(Fp) = p + 1 – t = 10r,  r prime 

� (Extended) Twisted Edwards coord., p = 2

E /Fp :  −x2 + y2 = 1 + 358x2 y2 , #E(Fp) = 

� GLS method using Jacobian coordinates,  

E’/Fp2 :  y2 = x3 − 3µ2x + 44µ3,  µ = 2 + i

� GLS method using (Extended) Twisted Edwards 

E’/Fp2 :  −µx2 + y2 = 1 + 109µx2 y2 ,  µ = 2 + 

r prime

� We ran each implementation 104 times on targeted processors and averaged the timings

0 fd63c3319814da55e88e9328e96273c483dca6cb = ×

Implementation Results
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variable-point [k]P with ∼128-bit security

Mostly in C with underlying field arithmetic in assembly

jac256189

= 2256– 189 :  ted256189

) = p + 1 – t = 4r,  r prime

coordinates,  p = 2127–1 :  jac1271gls

∈ Fp2 , #E’(Fp2) = (p + 1 – t)(p + 1 + t) is prime

GLS method using (Extended) Twisted Edwards coord.,  p = 2127–1 :  ted1271gls

= 2 + i ∈ Fp2 , #E’(Fp2) = (p + 1 – t)(p + 1 + t) = 4r,  

times on targeted processors and averaged the timings

0 fd63c3319814da55e88e9328e96273c483dca6cc84df53ec8d91b1b3e0237064



Standard curve (256 bits): cost of [k]P in cycles

Twisted Edwards curve (256 bits):
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Implementation Results

Method         Cost

Hisil et al. [HWC09] 468000

Jac256189 (this work) 337000

Curve25519 [GT07] 386000

Intel Core 2 Duo

Method         Cost

Hisil et al. [HWC09] 362000

Ted256189 (this work) 281000

Curve25519 [GT07] 386000

Intel Core 2 Duo

in cycles
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Implementation Results

Relative 

reduction 

(%)

Cost

Cost

reduction 

(%)

- - -

28% / 13% 274000 - / 11%

- 307000 -

Intel Core 2 Duo AMD Opteron

Relative 

reduction 

(%)

Cost

Cost

reduction 

(%)

- - -

22% / 27% 232000 - / 24%

- 307000 -

Intel Core 2 Duo AMD Opteron



Standard curve using GLS:  cost of [k0]P + [k

Twisted Edwards curve using GLS:

* Measured by us on the targeted  platforms
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Method         Cost

Relative 

reduction 

(%)

Galbraith et al. [GLS09] * 832000 -

Jac1271gls (this work) 644000 23% / 

Curve25519 [GT07] - -

Method         Cost

Relative 

reduction 

(%)

Galbraith et al. [GLS08] * 732000 -

Ted1271gls (this work) 588000 20% / 

Curve25519 [GT07] - -

Implementation Results

Intel Atom

Intel Atom

k1](λP) in cycles
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Relative 

reduction Cost

Relative 

reduction 

(%)

Cost

Cost

reduction 

(%)

332000 - 341000 -

23% / - 252000 24% / 35% 238000 30% / 22%

386000 - 307000 -

Intel Core 2 Duo AMD Opteron

Relative 

reduction Cost

Relative 

reduction 

(%)

Cost

Cost

reduction 

(%)

295000 - 295000 -

20% / - 229000 22% / 41% 211000 28% / 31%

386000 - 307000 -

Implementation Results

Intel Core 2 Duo AMD Opteron



Implementation Results
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Recent improvements!!

Galbraith et al.     

[GLS09]
295000 (1)

Ted1271gls 210000 29%

Intel Core 2 Duo E6750

Galbraith et al.     

[GLS09]
323000 (2)

Ted1271gls 213000 34%

Intel Xeon 5130

Galbraith et al.     

[GLS09]
255000  (1) / 262000 (2)

Ted1271gls 181000

AMD Phenom II X4 940 / 955

Galbraith et al.     

[GLS09]
284000 (1)

Ted1271gls 200000 30%

AMD Opteron 275

Implementation Results

Patrick Longa                                                                                  23                            University of Waterloo

29% / 31%

(1) Our own measurements, same 

platform, same compiler

(2) eBACS, accessed 08/2010 

(http://bench.cr.yp.to/results-dh.html) 



� Thorough bottom-up optimization process (field/point/scalar arithmetic levels) 

� Proposed several optimizations taking into account architectural features

� New implementations are (at least)  30% 

implementations on all x86-64 CPUs tested  

� Optimizations can be easily extended to other implementations using fixed point 

digital signatures and different coordinate systems/curve forms/underlying fields
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Conclusions

up optimization process (field/point/scalar arithmetic levels) 

Proposed several optimizations taking into account architectural features

30% faster than state-of-the-art 

CPUs tested  

Optimizations can be easily extended to other implementations using fixed point P, 

digital signatures and different coordinate systems/curve forms/underlying fields

Patrick Longa                                                                                  24                            University of Waterloo



More details can be found in:

� P. Longa,  “Speed Benchmarks for Elliptic Curve Scalar Multiplication”,  

07/2010. Available at:

http://patricklonga.bravehost.com/speed_ecc.html

� P. Longa and C. Gebotys, “Analysis of Efficient Techniques for Fast Elliptic 

Curve Cryptography on x86-64 based Processors”, in 

Archive, Report 2010/335, 2010.
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