
Patrick Longa

University of Waterloo

Joint work with C. Gebotys

Efficient Techniques for High

Elliptic Curve Cryptography

Workshop on Cryptographic Hardware

and Embedded Systems (CHES 2010)

Efficient Techniques for High-Speed

Elliptic Curve Cryptography

Workshop on Cryptographic Hardware

and Embedded Systems (CHES 2010)

Outline

� Elliptic Curve Cryptography (ECC):

� Basics and recent developments

� x86-64 based Processors

� Approach

� Optimizations

� Scalar, point and field arithmetic levels

� Optimizations with the GLS Method

� Implementation Results

� Conclusions and References

Patrick Longa 1

lliptic Curve Cryptography (ECC):

Scalar, point and field arithmetic levels

Optimizations with the GLS Method

Patrick Longa 1 University of Waterloo

ECC: Basics

Patrick Longa 2

� An elliptic curve E over a prime field Fp , p

by:

E : y2 = x3

where a, b ∈ Fp (a = −3 for efficiency purposes)

Given a point P ∈ E(Fp) of order r and an integer

multiplication as:

Q = [k]P = P + P +

� Scalar multiplication is the central/most time

� Security is based on the ECDLP problem: given points

� Only exponential attacks are known for solving ECDLP

Patrick Longa 2 University of Waterloo

p > 3, in (short) Weierstrass form is given

+ ax + b

3 for efficiency purposes)

and an integer k ∈ [1, r − 1], we define scalar

+ … + P (k times)

Scalar multiplication is the central/most time-consuming operation in ECC

Security is based on the ECDLP problem: given points P and Q, find k

Only exponential attacks are known for solving ECDLP

ECC: Recent developments

Patrick Longa 3

� Curve forms with faster arithmetic
An elliptic curve E over a prime field Fp , p

Bernstein et al. (2008):

E : ax2 + y2 = 1 +

where a, d ∈ Fp
*, a ≠ d (a = −1 for efficiency purposes)

� The Galbraith-Lin-Scott (GLS) method, Galbraith et al. (
Let E be an elliptic curve over Fp , s.t. the quadratic twist

efficiently computable homomorphism ψ(

Then: [k]P = [k0]P

where log k0 ≈ log k1 ≈ ½ log k

ECC: Recent developments

Patrick Longa 3 University of Waterloo

p > 3, in Twisted Edwards form is given by,

= 1 + dx2 y2

for efficiency purposes)

, Galbraith et al. (Eurocrypt 2009)
. the quadratic twist E’ of E(Fp2) has an

(x,y) → (αx,αy), ψ(P) = λP

+ [k1](λP)

x86-64 based Processors

Patrick Longa 4

Computers from laptop/desktop/server classes are rapidly adopting x86

(wordlength w = 64)

Main features:
� 64-bit GPRs and operations with powerful multiplier

� Deeply pipelined architectures (e.g., Intel Core 2 Duo: 15 stages)

� Aggressive out-of-order scheduling to exploit

� Sophisticated branch predictors

Key observation:
As w ↑ , (log p)/w ↓ , number of stages in pipeline gets larger and scheduling gets more

“aggressive”, “negligible” operations/issues get significant: addition, subtraction,

division/ multiplication by constants, pipeline stalls (by data dependencies) and branch

mispredictions

64 based Processors

Patrick Longa 4 University of Waterloo

Computers from laptop/desktop/server classes are rapidly adopting x86-64 ISA

and operations with powerful multiplier ⇒ favours Fp arithmetic

Deeply pipelined architectures (e.g., Intel Core 2 Duo: 15 stages)

order scheduling to exploit Instruction Level Parallelism (ILP)

 , number of stages in pipeline gets larger and scheduling gets more

“aggressive”, “negligible” operations/issues get significant: addition, subtraction,

division/ multiplication by constants, pipeline stalls (by data dependencies) and branch

Approach

Patrick Longa 5

� Bottom-up optimization of each layer of ECC computation taking into account

architectural features of x86-64 based processors

� Best ECC algorithms (to our knowledge) for each layer are identified and optimized

� Three representative 64-bit processors for our analysis and tests:

� 1.66GHz Intel Atom N450 (netbook/notebook class)

� 2.66GHz Intel Core 2 Duo E6750 (desktop class)

� 2.6GHz AMD Opteron 252 (server/workstation class)

Patrick Longa 5 University of Waterloo

up optimization of each layer of ECC computation taking into account

64 based processors

Best ECC algorithms (to our knowledge) for each layer are identified and optimized

bit processors for our analysis and tests:

/notebook class)

2.66GHz Intel Core 2 Duo E6750 (desktop class)

252 (server/workstation class)

Field Arithmetic

Patrick Longa 6

Incomplete Reduction (IR), Yanik et al. (2002):

Given a, b ∈ [0, p − 1], allow the result to stay in the range [0, 2

performing a complete reduction, where p < 2

w: wordlength)

� For maximal efficiency, select a pseudo-Mersenne

c small (i.e., c << 2w):

� Reduction after addition a + b : discard carry bit in most significant word and then add

� Subtraction does not require IR (already optimal!)

� However, other operations may benefit from IR: addition between

reduced and incompletely reduced numbers, multiplication by constant, division by

constant,…

Field Arithmetic

Patrick Longa 6 University of Waterloo

et al. (2002):

1], allow the result to stay in the range [0, 2s − 1] instead of

< 2s < 2p − 1, s = n.w (n: number of words,

Mersenne prime p = 2m – c, where m = s,

: discard carry bit in most significant word and then add c

Subtraction does not require IR (already optimal!)

However, other operations may benefit from IR: addition between completely

numbers, multiplication by constant, division by

Field Arithmetic

Patrick Longa 7

Conditional branches

� Modular operations are traditionally implemented with conditional branches

� Example: addition

Given a, b ∈ [0, p − 1], execute a + b

� Condition is true ~50% in a random pattern

� We’d better eliminate conditional branches in modular reduction.

Two alternatives:

� Using predicated move instructions (e.g., cmov

� Using look-up tables and indexed indirect addressing

� Basic idea: perform reduction with 0 when it is not actually required

Field Arithmetic

Patrick Longa 7 University of Waterloo

Modular operations are traditionally implemented with conditional branches

b. If a + b > p, then a + b – p

Condition is true ~50% in a random pattern ⇒ worst “nightmare” of predictors

We’d better eliminate conditional branches in modular reduction.

cmov in x86)

up tables and indexed indirect addressing

Basic idea: perform reduction with 0 when it is not actually required

Incomplete Reduction and Conditional branches

Cost (in cycles) of 256-bit modular operations,

⇒ Cost reductions using IR in the range 7% -

⇒ Cost reductions by eliminating conditional branches as high as 50%

⇒ Operations using IR are more benefited

Patrick Longa 8

Modular operation
w/o

CB

with

CB

Sub 21 37

Add with IR 20 37

Add 25 39

Mult2 with IR 19 38

Mult2 24 38

Div2 with IR 20 36

Div2 25 39

Intel Core 2 Duo

Field Arithmetic
Incomplete Reduction and Conditional branches

bit modular operations, p = 2256 – 189

- 41%

Cost reductions by eliminating conditional branches as high as 50%

Patrick Longa 8 University of Waterloo

Cost reduction

(%)

w/o

CB

with

CB

Cost reduction

(%)

43% 16 23 30%

46% 13 21 38%

36% 20 23 13%

50% 10 19 47%

37% 17 20 15%

44% 11 18 39%

36% 18 27 33%

Intel Core 2 Duo AMD Opteron

Field Arithmetic

“Contiguous” dependencies: RAW dependencies between successive field operations

Patrick Longa 9

> addq %rcx,%r8

> movq %r8, 8

> adcq $0,%r9

> movq %r9, 16

> adcq $0,%r10

> movq %r10,24(%

> adcq $0,%r11

> Add(op1,op2,res1) > movq %r11,32(%

> Add(res1,op3,res2) > xorq %rax,%rax

> movq $0xBD,%rcx

> movq 8(%rdi

> addq 8(%rsi

> movq 16(%rdi

> adcq 16(%rsi

> movq 24(%rdi

> adcq 24(%rsi

> movq 32(%rdi

> adcq 32(%rsi

�

Field Operations Assembly instructions

Field Arithmetic

�

�

�

RAW dependencies between successive field operations

Patrick Longa 9 University of Waterloo

%rcx,%r8

, 8(%rdx)

$0,%r9

, 16(%rdx)

$0,%r10

%r10,24(%rdx)

$0,%r11

%r11,32(%rdx)

rax,%rax

$0xBD,%rcx

rdi) ,%r8

rsi) ,%r8

rdi),%r9

rsi),%r9

rdi),%r10

rsi),%r10

rdi),%r11

rsi),%r11

Assembly instructions

Field Arithmetic

ρ : “distance” between instructions

“Ideal” non-superscalar CPU:

Pipeline stalls for ∼(δwrite − ρ) cycles

δwrite : pipeline latency of write

instruction

Field Arithmetic

Patrick Longa 10

“Contiguous” dependencies (Cont’d)

We propose three solutions:

1. Field arithmetic scheduling ⇒ execute other field operations while previous

memory writings complete their pipeline latencies

2. Merging point operations ⇒ more possibilities for field operation rescheduling

(it additionally reduces number of function calls)

3. Merging field operations ⇒ direct elimination of “contiguous” dependencies

(it additionally reduces memory reads/writes)

E.g., a – b – c (mod p), a + a + a (mod p) (as in other crypto libraries, MIRACL)

a – 2b (mod p), merging of a – b (mod

Field Arithmetic

Patrick Longa 10 University of Waterloo

execute other field operations while previous

memory writings complete their pipeline latencies

more possibilities for field operation rescheduling

(it additionally reduces number of function calls)

direct elimination of “contiguous” dependencies

(it additionally reduces memory reads/writes)

) (as in other crypto libraries, MIRACL)

(mod p) and (a – b) – 2c (mod p)

Field Arithmetic

Patrick Longa 11

“Contiguous” dependencies (Cont’d) (X1,

“Unscheduled” Scheduled

> Sqr(Z1,t3) > Sqr(Z1,t3)

> Add(X1,t3,t1) D > Sqr(Y1,t2)

> Sub(X1,t3,t3) > Add(X1,t3,t1)

> Mult(t3,t1,t2) D > Sub(X1,t3,t3)

> Mult3(t2,t1) D > Mult3(t3,t0)

> Div2(t1,t1) D > Mult(X1,t2,t4

> Mult(Y1,Z1,t3) > Mult(t1,t0,t3

> Sqr(Y1,t2) > Sqr(t2,t0)

> Mult(t2,X1,t4) D > Div2(t3,t1)

> Sqr(t1,t3) > Mult(Y1,Z1,Z1

> Sub(t3,t4,X1) D > Sqr(t1,t2)

> Sub(X1,t4,X1) D > DblSub(t2,t4,X1)

> Sub(t4,X1,t3) D > Sub(t4,X1,t2)

> Mult(t3,t1,t4) D > Mult(t1,t2,t4)

> Sqr(t2,t0) > Sub(t4,t0,Y1)

> Sub(t4,t0,Y1) D

Field Arithmetic

Patrick Longa 11 University of Waterloo

,Y1,Z1) ← 2(X1,Y1,Z1)

“Unscheduled” Scheduled Scheduled and
merged DBL-DBL

> Sqr(Z1,t3)

> Sqr(Y1,t2)

> Add(X1,t3,t1) > Add(X1,t3,t1)

> Sub(X1,t3,t3) > Sub(X1,t3,t3)

) D > Mult3(t3,t0) D

(X1,t2,t4) > Mult(X1,t2,t4)

(t1,t0,t3) > Mult(t1,t0,t3)

> Sqr(t2,t0)

> Div2(t3,t1)

(Y1,Z1,Z1) > Mult(Y1,Z1,Z1)

> Sqr(t1,t2)

(t2,t4,X1) D > Sqr(Z1,t3)

> Sub(t4,X1,t2) D > DblSub(t2,t4,X1)

(t1,t2,t4) D > Sub(t4,X1,t2) D

> Sub(t4,t0,Y1) D > Add(X1,t3,t5)

> Mult(t1,t2,t4)

> Sub(X1,t3,t3)

> Sub(t4,t0,Y1)

> Mult3(t3,t1)

> Sqr(Y1,t2)

> …

“Contiguous” dependencies (Cont’d)

Cost (in cycles) of point doubling, p = 2256 –

⇒ Estimated reduction of 5% and 9% on AMD

⇒ Less “aggressive” architectures are not greatly affected by “contiguous” dependencies

Patrick Longa 12

Point operation “Unscheduled”
Scheduled and

merged

DBL 3390 3332

Relative reduction - 2%

Estimated reduction for

[k]P
- 1%

Field Arithmetic

Intel Atom

189

Estimated reduction of 5% and 9% on AMD Opteron and Intel Core 2 Duo, respect.

Less “aggressive” architectures are not greatly affected by “contiguous” dependencies

Patrick Longa 12 University of Waterloo

Scheduled and
“Unscheduled”

Scheduled and

merged
“Unscheduled”

Scheduled and

merged

1115 979 786 726

- 12% - 8%

- 9% - 5%

Intel Core 2 Duo AMD Opteron

Field Arithmetic

Point Arithmetic

Patrick Longa 13

Our choice of formulas:

� Jacobian coordinates: (x, y) � (X/Z2, Y/Z3, 1), (

DBL (a = −3)

mDBLADD (Z2 = 1)

DBLADD (Z2
2, Z2

� Extended Twisted Edwards coordinates: (x

(X : Y : Z : T) = {(λX, λY, λZ , λZ): λ ∈ Fp

DBL (a = −1)

mDBLADD (Z2 = 1)

DBLADD

Point Arithmetic

Patrick Longa 13 University of Waterloo

, 1), (X : Y : Z) = {(λ2X, λ3Y, λZ): λ ∈ Fp
*}

3) ⇒ 4M + 4S

= 1) ⇒ 13M + 5S

2
3 cached) ⇒ 16M + 5S

x, y) � (X/Z, Y/Z, 1, T/Z), T = XY/Z

p
*}

1) ⇒ 4M + 3S

= 1) ⇒ 11M + 3S

⇒ 12M + 3S

Longa 2007

Hisil et al. 2008

Point Arithmetic

Patrick Longa 14

Minimizing costs:

� Trade additions for subtractions (or vice versa) by applying

� Minimize constants and additions/subtractions by applying

E.g., (X2,Y2,Z2) ← 2(X1,Y1,Z1) using Jacobian

A = 3(X1 + Z1
2)(X1 – Z1

2), B = 4X1Y1
2

X2 = A2 – 2B

Y2 = A(B – X2) – 8Y1
4

Z2 = 2Y1Z1

� Most constants are eliminated

� If 1Mult > 1Sqr + 3“Add”, replace Y1Z1

� See our database of formulas using Jacobian

http://patricklonga.bravehost.com/jacobian.html

Point Arithmetic

Patrick Longa 14 University of Waterloo

Trade additions for subtractions (or vice versa) by applying λ = −1 ∈ Fp
*

Minimize constants and additions/subtractions by applying λ = 2−1 ∈ Fp
*

Jacobian coord.

2 A = 3(X1 + Z1
2)(X1 – Z1

2)/2, B = X1Y1
2

X2 = A2 – 2B

Y2 = A(B – X2) – Y1
4

Z2 = Y1Z1

by [(Y1+Z1)
2 – Y1

2 – Z1
2]/2

Jacobian coordinates:

http://patricklonga.bravehost.com/jacobian.html

Scalar Arithmetic

Patrick Longa 15

1. Convert k to an efficient “window-based” representation, say

where ki ∈ {0, 1, 3, 5, … , m}

In particular, we use width-w non-adjacent form (

between nonzero digits:

� If m = 2w–1– 1, w ≥ 2 ∈ Z ⇒ traditional integral window, nonzero density (

On-the-fly conversion algorithms that save memory are not good candidates here

(too many function calls, and memory is not constrained)

⇒ we’d better convert k first and then execute evaluation stage

Scalar Arithmetic

Patrick Longa 15 University of Waterloo

N-1

based” representation, say k = ∑ ki 2i ,
i=0

adjacent form (wNAF) that insert (w–1) “0”-digits

traditional integral window, nonzero density (w+1)–1

fly conversion algorithms that save memory are not good candidates here

(too many function calls, and memory is not constrained)

first and then execute evaluation stage

Scalar Arithmetic

Patrick Longa 16

2. Precompute L = (m – 1)/2 non-trivial points {

Inversion is relatively expensive, 1I = 175M

� For Jacobian coord., use LM method without inversions, Longa and

Cost = (5L+2)M + (2

which is the lowest cost in the literature

� For Twisted Edwards, compute P + 2P + 2

3. Evaluate [k]P using a double-and-doubleadd

� For both systems, w = 5 (L = 7) is optimal for

Two main functions: merged 4DBL and DBLADD

Scalar Arithmetic

Patrick Longa 16 University of Waterloo

trivial points {P, [3]P, [5]P, … , [m]P}

Inversion is relatively expensive, 1I = 175M

., use LM method without inversions, Longa and Gebotys (2009):

+2)M + (2L+4)S,

+ 2P + … + 2P using general additions

doubleadd algorithm

= 7) is optimal for bitlength(k) = 256 bits

Two main functions: merged 4DBL and DBLADD

GLS Method

Patrick Longa 17

Field and Point Arithmetic:

� Similar techniques apply to Fp2 arithmetic

� Conditional branches can be avoided by clever choice of

� “Contiguous” dependencies are more expensive (
avoided by rescheduling ⇒ scheduling at F

� More opportunities for merging field operations because of

reduced operand size (more GPRs are available for intermediate computations)

E.g., a – 2b (mod p), (a + a + a)/2 (mod p),

merging of a + b (mod p) and a – b (mod

(mod p), and merging of a + a (mod p

Patrick Longa 17 University of Waterloo

Conditional branches can be avoided by clever choice of p (e.g., p = 2127 – 1)

“Contiguous” dependencies are more expensive (n = 2 words), but more easily
Fp2 and Fp levels

More opportunities for merging field operations because of Fp2 / Fp interaction and

are available for intermediate computations)

), a + b – c (mod p),

(mod p), merging of a – b (mod p) and c – d

p) and a + a + a (mod p)

GLS Method

Patrick Longa 18

Scalar Arithmetic:

� Recall that [k]P = [k0]P + [k1](λP)

Use (fractional) wNAF to convert k0 and k1

⇒ Again, it is better to convert k0 and k1

� Precompute L = (m – 1)/2 non-trivial points {

Inversion is not so expensive, 1I = 59M

� For Jacobian coord., use LM method with

Cost = 1I +(9L+1)M + (2

which is the lowest cost in the literature

� For Twisted Edwards, compute P + 2P + 2

addition is only 1M more expensive than mixed addition)

Patrick Longa 18 University of Waterloo

1:

first and then execute evaluation stage

trivial points {P, [3]P, [5]P, … , [m]P}

., use LM method with one inversion, Longa and Miri (PKC 2008):

+1)M + (2L+5)S,

+ 2P + … + 2P using general additions (general

addition is only 1M more expensive than mixed addition)

GLS Method

Patrick Longa 19

Scalar Arithmetic: (Cont’d)

� Evaluate [k]P = [k0]P + [k1](λP) using interleaving

Möller (SAC 2001)

� For Jacobian coord., a fractional window L

� For Twisted Edwards, an integral window

� Three main functions: DBL, DBLADD and DBLADDADD

Patrick Longa 19 University of Waterloo

interleaving, Gallant et al. (Crypto 2001) and

L = 6 is optimal (bitlength(k) = 256 bits)

For Twisted Edwards, an integral window w = 5 (L = 7) is optimal (bitlength(k) = 256 bits)

main functions: DBL, DBLADD and DBLADDADD

Implementation Results

Patrick Longa 20

� Implementation of variable-scalar-variable

� Mostly in C with underlying field arithmetic in assembly

� Plugged to MIRACL library [Scott]

� Four versions:

� Jacobian coordinates, p = 2256–189: jac256189

E /Fp : y2 = x3 − 3x + b, with

#E(Fp) = p + 1 – t = 10r, r prime

� (Extended) Twisted Edwards coord., p = 2

E /Fp : −x2 + y2 = 1 + 358x2 y2 , #E(Fp) =

� GLS method using Jacobian coordinates,

E’/Fp2 : y2 = x3 − 3µ2x + 44µ3, µ = 2 + i

� GLS method using (Extended) Twisted Edwards

E’/Fp2 : −µx2 + y2 = 1 + 109µx2 y2 , µ = 2 +

r prime

� We ran each implementation 104 times on targeted processors and averaged the timings

0 fd63c3319814da55e88e9328e96273c483dca6cb = ×

Implementation Results

Patrick Longa 20 University of Waterloo

variable-point [k]P with ∼128-bit security

Mostly in C with underlying field arithmetic in assembly

jac256189

= 2256– 189 : ted256189

) = p + 1 – t = 4r, r prime

coordinates, p = 2127–1 : jac1271gls

∈ Fp2 , #E’(Fp2) = (p + 1 – t)(p + 1 + t) is prime

GLS method using (Extended) Twisted Edwards coord., p = 2127–1 : ted1271gls

= 2 + i ∈ Fp2 , #E’(Fp2) = (p + 1 – t)(p + 1 + t) = 4r,

times on targeted processors and averaged the timings

0 fd63c3319814da55e88e9328e96273c483dca6cc84df53ec8d91b1b3e0237064

Standard curve (256 bits): cost of [k]P in cycles

Twisted Edwards curve (256 bits):

Patrick Longa 21

Implementation Results

Method Cost

Hisil et al. [HWC09] 468000

Jac256189 (this work) 337000

Curve25519 [GT07] 386000

Intel Core 2 Duo

Method Cost

Hisil et al. [HWC09] 362000

Ted256189 (this work) 281000

Curve25519 [GT07] 386000

Intel Core 2 Duo

in cycles

Patrick Longa 21 University of Waterloo

Implementation Results

Relative

reduction

(%)

Cost

Cost

reduction

(%)

- - -

28% / 13% 274000 - / 11%

- 307000 -

Intel Core 2 Duo AMD Opteron

Relative

reduction

(%)

Cost

Cost

reduction

(%)

- - -

22% / 27% 232000 - / 24%

- 307000 -

Intel Core 2 Duo AMD Opteron

Standard curve using GLS: cost of [k0]P + [k

Twisted Edwards curve using GLS:

* Measured by us on the targeted platforms

Patrick Longa 22

Method Cost

Relative

reduction

(%)

Galbraith et al. [GLS09] * 832000 -

Jac1271gls (this work) 644000 23% /

Curve25519 [GT07] - -

Method Cost

Relative

reduction

(%)

Galbraith et al. [GLS08] * 732000 -

Ted1271gls (this work) 588000 20% /

Curve25519 [GT07] - -

Implementation Results

Intel Atom

Intel Atom

k1](λP) in cycles

Patrick Longa 22 University of Waterloo

Relative

reduction Cost

Relative

reduction

(%)

Cost

Cost

reduction

(%)

332000 - 341000 -

23% / - 252000 24% / 35% 238000 30% / 22%

386000 - 307000 -

Intel Core 2 Duo AMD Opteron

Relative

reduction Cost

Relative

reduction

(%)

Cost

Cost

reduction

(%)

295000 - 295000 -

20% / - 229000 22% / 41% 211000 28% / 31%

386000 - 307000 -

Implementation Results

Intel Core 2 Duo AMD Opteron

Implementation Results

Patrick Longa 23

Recent improvements!!

Galbraith et al.

[GLS09]
295000 (1)

Ted1271gls 210000 29%

Intel Core 2 Duo E6750

Galbraith et al.

[GLS09]
323000 (2)

Ted1271gls 213000 34%

Intel Xeon 5130

Galbraith et al.

[GLS09]
255000 (1) / 262000 (2)

Ted1271gls 181000

AMD Phenom II X4 940 / 955

Galbraith et al.

[GLS09]
284000 (1)

Ted1271gls 200000 30%

AMD Opteron 275

Implementation Results

Patrick Longa 23 University of Waterloo

29% / 31%

(1) Our own measurements, same

platform, same compiler

(2) eBACS, accessed 08/2010

(http://bench.cr.yp.to/results-dh.html)

� Thorough bottom-up optimization process (field/point/scalar arithmetic levels)

� Proposed several optimizations taking into account architectural features

� New implementations are (at least) 30%

implementations on all x86-64 CPUs tested

� Optimizations can be easily extended to other implementations using fixed point

digital signatures and different coordinate systems/curve forms/underlying fields

Patrick Longa 24

Conclusions

up optimization process (field/point/scalar arithmetic levels)

Proposed several optimizations taking into account architectural features

30% faster than state-of-the-art

CPUs tested

Optimizations can be easily extended to other implementations using fixed point P,

digital signatures and different coordinate systems/curve forms/underlying fields

Patrick Longa 24 University of Waterloo

More details can be found in:

� P. Longa, “Speed Benchmarks for Elliptic Curve Scalar Multiplication”,

07/2010. Available at:

http://patricklonga.bravehost.com/speed_ecc.html

� P. Longa and C. Gebotys, “Analysis of Efficient Techniques for Fast Elliptic

Curve Cryptography on x86-64 based Processors”, in

Archive, Report 2010/335, 2010.

Patrick Longa 25

References

P. Longa, “Speed Benchmarks for Elliptic Curve Scalar Multiplication”,

http://patricklonga.bravehost.com/speed_ecc.html

, “Analysis of Efficient Techniques for Fast Elliptic

64 based Processors”, in Cryptology ePrint

Patrick Longa 25 University of Waterloo

[GLS08] S. Galbraith, X. Lin and M. Scott, “Endomorphisms for Faster Elliptic Curve Cryptography on a Large Class of

Curves,” in Cryptology ePrint Archive, Report 2008/194, 2008.

[GLS09] S. Galbraith, X. Lin and M. Scott, “Endomorphisms for Faster Elliptic Curve Cryptography on a Large Class of

Curves,” in EUROCRYPT 2009.

[GLS01] R. Gallant, R. Lambert and S. Vanstone, “Faster Point Multiplication on Elliptic Curves with Efficient

Endomorphisms,” in CRYPTO 2001.

[GT07] P. Gaudry and E. Thomé, “The mpFq Library and Implementing Curve

[HWC08] H. Hisil, K. Wong, G. Carter and E. Dawson, “Twisted Edwards Curves Revisited,” in

[HWC09] H. Hisil, K. Wong, G. Carter and E. Dawson, “Jacobi

Report 2009/312, 2009.

[LG08] P. Longa and C. Gebotys, “Setting Speed Records with the (Fractional)

Efficient Elliptic Curve Scalar Multiplication,” CACR technical report

[LM08] P. Longa and A. Miri, “New Composite Operations and

over Prime Fields,” in PKC 2008.

[Möl01] B. Möller, “Algorithms for Multi-Exponentiation,” in SAC 2001

[Scott] M. Scott, “MIRACL – Multiprecision Integer and Rational Arithmetic C/C++ Library,” 1988

Patrick Longa 26

References
for Faster Elliptic Curve Cryptography on a Large Class of

for Faster Elliptic Curve Cryptography on a Large Class of

[GLS01] R. Gallant, R. Lambert and S. Vanstone, “Faster Point Multiplication on Elliptic Curves with Efficient

Library and Implementing Curve-Based Key Exchanges,” in SPEED 2007.

, K. Wong, G. Carter and E. Dawson, “Twisted Edwards Curves Revisited,” in ASIACRYPT 2008.

, K. Wong, G. Carter and E. Dawson, “Jacobi Quartic Curves Revisited,” in Cryptology ePrint Archive,

, “Setting Speed Records with the (Fractional) Multibase Non-Adjacent Form Method for

CACR technical report, CACR 2008-06, 2008.

, “New Composite Operations and Precomputation Scheme for Elliptic Curve Cryptosystems

SAC 2001.

Integer and Rational Arithmetic C/C++ Library,” 1988–2007.

Patrick Longa 26 University of Waterloo

Patrick Longa

University of Waterloo

http://patricklonga.bravehost.com

Q & A

Efficient Techniques for High

Elliptic Curve Cryptography

Patrick Longa

University of Waterloo

http://patricklonga.bravehost.com

Q & A

Efficient Techniques for High-Speed

Elliptic Curve Cryptography

