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° An elliptic curve E over a prime field I, p > 3, in (short) Weierstrass form is given
by:

Eov=v tarth

where a, b € I, (a =-3 for efficiency purposes)
Given a point P € E(IFP) of order r and an integer k € [1, r — 1], we define scalar

multiplication as:
Q=[k][P=P+P+ ...+ P (ktimes)
® Scalar multiplication is the central/most time-consuming operation in ECC

® Security is based on the ECDLP problem: given points P and Q, find k&
* Only exponential attacks are known for solving ECDLP
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» Curve forms with faster arithmetic
An elliptic curve E over a prime field IFP , p >3, in Twisted Edwards form is given by,

Bernstein et al. (2008):

Eacty =14dvy

where a,d € F,*, a#d (a=-1 for efficiency purposes)

» The Galbraith-Lin-Scott (GLS) method, Galbraith et al. (Eurocrypt 2009)
Let E be an elliptic curve over I, s.t. the quadratic twist E” of E(IF 2) has an

efficiently computable homomorphism ¥(x,y) — (ax,ay), ¥(P) = AP
Then: [k]P = [ky|P + [k ](\P)

where log k, = log k, = Y2log k
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Computers from laptop/desktop/server classes are rapidly adopting x86-64 ISA
(wordlength w=64)

Main features:

® 64-bit GPRs and operations with powerful multiplier = favours I, arithmetic

* Deeply pipelined architectures (e.g., Intel Core 2 Duo: 15 stages)

* Aggressive out-of-order scheduling to exploit Instruction Level Parallelism (ILP)
* Sophisticated branch predictors

Key observation:
As w1 ,l(log p)/wl| , number of stages in pipeline gets larger and scheduling gets more

DG

“aggressive”, “negligible” operations/issues get significant: addition, subtraction,
division/ multiplication by constants, pipeline stalls (by data dependencies) and branch
mispredictions
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* Bottom-up optimization of each layer of ECC computation taking into account
architectural features of x86-64 based processors

* Best ECC algorithms (to our knowledge) for each layer are identified and optimized

® Three representative 64-bit processors for our analysis and tests:

e 1.66GHz Intel Atom N450 (netbook/notebook class)
e 2.66GHz Intel Core 2 Duo E6750 (desktop class)
e 2.6GHz AMD Opteron 252 (server/workstation class)
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Incomplete Reduction (IR), Yanik et al. (2002):

Given a, b € [0, p — 1], allow the result to stay in the range [0, 2° — 1] instead of

performing a complete reduction, where p < 2° < 2p — 1, s = n.w (n: number of words,
w: wordlength)

* For maximal efficiency, select a pseudo-Mersenne prime p = 2™ — ¢, where m = s,
c small (i.e., c << 2%):

e Reduction after addition a + b : discard carry bit in most significant word and then add ¢
e Subtraction does not require IR (already optimal!)

* However, other operations may benefit from IR: addition between completely
reduced and incompletely reduced numbers, multiplication by constant, division by
constant,...
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Conditional branches

® Modular operations are traditionally implemented with conditional branches
* Example: addition

Givena,b e [0,p—1],executea+b. If a+b>p,then a+b—p

* Condition is true ~50% in a random pattern = worst “nightmare” of predictors

e We’d better eliminate conditional branches in modular reduction.
Two alternatives:

e Using predicated move instructions (e.g., cmov in x86)
e Using look-up tables and indexed indirect addressing

* Basic idea: perform reduction with 0 when it is not actually required
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Incomplete Reduction and Conditional branches

Cost (in cycles) of 256-bit modular operations, p = 2239 — 189

Modular operation

Intel Core 2 Duo

Cost reduction

(%)

AMD Opteron

Cost reduction

(%)

Sub 21 37 43% 16 23 30%
Add with IR 20 37 46% 13 21 38%
Add 25 39 36% 20 23 13%
Mult2 with IR 19 38 50% 10 19 4'7%
Mult2 24 38 37% 17 20 15%
Div2 with IR 20 36 44% 11 18 39%
Div2 25 39 36% 18 27 33%

= Cost reductions using IR in the range 7% - 41%
= Cost reductions by eliminating conditional branches as high as 50%
= Operations using IR are more benefited
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“Contiguous” dependencies: RAW dependencies between successive field operations

Field Operations Assembly instructions

addqg
movq
adcqg
movq
adcqg
movq
adcqg
movq
Xorqg
movq
movq
addqg
movq
adcqg
movq
adcqg
movq
adcqg

> Add (opl,op2,resl)
> Add (resl, op3,res?2)

vV VV V V V V VYV YV YV YV VYV YV YV VYV

$rcx, %r8

%$r8, |8 (%rdx)

$0,%r9

3r9, L6 (5rdx)

S0, %rl0

srl10,|24(

Srdx)

e & e

o7 ol 8 R [ RO

Srdx)

$rax, $rax
S0xBD, $rcx

8 (%rdi)

, 58
, 58
o mhe
o mhe
eyl
eyl
e o e
e o e

p : “distance” between instructions

“Ideal’” non-superscalar CPU:
Pipeline stalls for ~(6,,,;,, — p) cycles
.. - Pipeline latency of write

write *

istruction
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“Contiguous” dependencies (Cont’d)

We propose three solutions:

. Field arithmetic scheduling = execute other field operations while previous
memory writings complete their pipeline latencies

2. Merging point operations = more possibilities for field operation rescheduling
(it additionally reduces number of function calls)

3. Merging field operations = direct elimination of “contiguous” dependencies
(it additionally reduces memory reads/writes)

E.g., a—b—c(modp), a+a+a(modp) (asin other crypto libraries, MIRACL)
a—2b(modp), merging of a—b(modp) and (a—b)—2c (modp)
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“Contiguous” dependencies (Cont’d) (X,,Y,Z)) «— 2(X,,Y\,Z,)

> Sqr(z1,t3)

> Add(X1,t3,tl) D
S S 33y

S Rl e Y R ol D
> Mult3(t2,tl) D
S v e ol ey o o) D

> Mult (Y1,Z1,t3)
DSl aA UG R o)

S 10 i P G oy 9
SorSefrnflat3e)

> Sub(t3,t4,X1)

)

> Sub(X1,t4,X1)
> Sub(t4,X1,t3)

O © © ©

S0\ G ] ] 5 o W o a7 0
> Sqgr (t2,t0)
L S HoH & 1 w0

C

SIG et A B )

SO et G R )

> Add(X1,t3,tl)
> Sub(X1,t3,t3)
> Mult3(t3,t0)

> Mult (X1,t2,t4)
> Mult (tl,t0,t3)
PRSI pa el )

S Pl PSR e )

> Mult(Y1l,z1,71)
SIG et W R B )

> DblSub(t2, t4,X1)
> Sub(t4,X1,t2)
> Mult(tl,t2,t4)
> Sub(t4,t0,Y1)

O © © ©

“Unscheduled”
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Scheduled

s S (e B )

S (B0 e )

> Add(X1,t3,tl)

> Sub (X1,t3,t3)

> Mult3(t3,t0) D
> Mult (X1,t2,t4)

> Mult (tl1l,t0,t3)

S e )

T AT S i o )

A e b L )

S (e )

> Sqr(z1,t3)

> DblSub(t2,t4,X1)

> Sub(t4,X1,t2) D
> Add (X1,t3,t5)

> Mult (tl,t2,t4)

> Sub(X1,t3,t3)

> Sub(t4,t0,Y1)

> Mult3(t3,tl1)

> Sqr(Y1l,t2)

> eee

Scheduled and
merged DBL-DBL
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“Contiguous” dependencies (Cont’d)

Cost (in cycles) of point doubling, p =226 — 189

Intel Atom Intel Core 2 Duo AMD Opteron

Point operation “Unscheduled” Sd‘ﬁf;‘gegda“d “Unscheduled” Sd‘ﬁf;‘gegda“d “Unscheduled” Sd‘ﬁf;‘gegda“d
DBL 3390 3332 1115 979 786 726
Relative reduction i 20, - 12% = 8%
Scs];i)mated reduction for i 1% i 9% ) 59

= Estimated reduction of 5% and 9% on AMD Opteron and Intel Core 2 Duo, respect.
= Less “aggressive” architectures are not greatly affected by “contiguous” dependencies
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Our choice of formulas:

* Jacobian coordinates: (x, y) — (X/Z%, Y/Z°, 1), (X :Y:Z) = {(N*X, XY, \Z2): A € F ¥}

DBL (a = —3) = 4M+4S
mDBLADD (Z,=1) = 13M+5S

> 3 Longa 2007
DBLADD (Z,°, Z,” cached) = 16M+5S

* Extended Twisted Edwards coordinates: (x, y) — (X/Z, Y/Z, 1, T/Z), T = XY/Z
(12 1 x0T

DBL (a=—1) = 4M+3S
mDBLADD (Z,=1) = 11M+3S o
DBLADD — 12M+3S Hisil et al. 2008
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Minimizing costs:

° Trade additions for subtractions (or vice versa) by applying A=—1¢€ F*

* Minimize constants and additions/subtractions by applying A=2"!¢ I

E.g., (X,,Y,,Z,) < 2(X,Y,Z,) using Jacobian coord.

A= + 790X, 7)) B= /(lelz A=3X ¥ L X, Z) B=X Y~
X,=A2-2B X,=A2-2B

| v,=A®B-X,) - £r* v AR 1) ¥’

| 2,=2Y,7, | Z,=Y/7,

®* Most constants are eliminated
o If 1Mult> 1Sqr + 3“Add”, replace Y,Z, by [(Y,+Z)?-Y*-Z*]/2

* See our database of formulas using Jacobian coordinates:
http://patricklonga.bravehost.com/jacobian.html

Patrick Longa University of Waterloo e



N-1
1. Convert k to an efficient “window-based” representation, say k=) k,2¢,

i=0

whete ko101 305 7 om]

In particular, we use width-w non-adjacent form (WNAF) that insert (w-1) “0”-digits
between nonzero digits:

o If m=2"1-1,w>2 € 7Z = traditional integral window, nonzero density (w+1)!

On-the-fly conversion algorithms that save memory are not good candidates here
(too many function calls, and memory is not constrained)

= we’d better convert k first and then execute evaluation stage
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2. Precompute L = (m — 1)/2 non-trivial points {P, [3]P, [5]P, ..., [m]P}
Inversion is relatively expensive, 11 = 175M

e For Jacobian coord., use LM method without inversions, L.onga and Gebotys (2009):

Cost = (SL+2)M + (2L+4)S,

which 1s the lowest cost in the literature

e For Twisted Edwards, compute P+ 2P + 2P + ... + 2P using general additions

3. Evaluate [k]P using a double-and-doubleadd algorithm

e For both systems, w =5 (L =7) is optimal for bitlength(k) = 256 bits
Two main functions: merged 4DBL and DBLADD
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Field and Point Arithmetic:

* Similar techniques apply to I > arithmetic
* Conditional branches can be avoided by clever choice of p (e.g.,p=212"-1)

* “Contiguous” dependencies are more expensive (n = 2 words), but more easily

avoided by rescheduling = scheduling at IF 2 and IF, levels

More opportunities for merging field operations because of I >/ I, interaction and
reduced operand size (more GPRs are available for intermediate computations)

E.g.,a—2b(modp), (a+a+a)/2(modp), a+b— c(modp),
merging of a+ b (mod p) and a—b (mod p), merging of a—b (mod p) and c—d
(mod p), and merging of a+a (modp) and a+a+a (mod p)
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Scalar Arithmetic:

* Recall that [k]P = [ky]P + [k J(A\P)
Use (fractional) wNAF to convert &, and k;:

= Again, it 1s better to convert k, and k; first and then execute evaluation stage

® Precompute L = (m — 1)/2 non-trivial points {P, [3]P, [S]P, ..., [m]|P}
Inversion is not so expensive, 11 = S9M

e For Jacobian coord., use LM method with one inversion, Longa and Miri (PKC 2008):
Cost = 11 +(9L+1)M + (2L+5)S,
which is the lowest cost in the literature

e For Twisted Edwards, compute P + 2P + 2P + ... + 2P using general additions (general
addition is only 1M more expensive than mixed addition)
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Scalar Arithmetic: (Cont’d)

* Evaluate [k]P = [ky]P + [k J(A\P) using interleaving, Gallant et al. (Crypto 2001) and
Moller (SAC 2001)

e For Jacobian coord., a fractional window L = 6 is optimal (bitlength(k) = 256 bits)
e For Twisted Edwards, an integral window w =5 (L = 7) 1s optimal (bitlength(k) = 256 bits)

® Three main functions: DBL, DBLADD and DBLADDADD
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* Implementation of variable-scalar-variable-point [k]P with ~128-bit security

* Mostly in C with underlying field arithmetic in assembly
* Plugged to MIRACL library [Scott]
* Four versions:

e Jacobian coordinates, p =22°-189: jac256189
E/F,: y*=x3 — 3x + b, with b =0xfd63c3319814da55¢88¢932896273c483dcabec84df53ec8d91b1b3¢0237064
#E(F)=p+1—1t=10r, rprime

e (Extended) Twisted Edwards coord., p = 225~ 189 : ted256189
EIF,: —x*+y*=1+358x*y*, #E(F,)=p + 1 —t=4r, r prime

e GLS method using Jacobian coordinates, p = 2'27—1: jacl1271gls
EfFp: y»=x —3ux+44p°, u=2+ic€Fp, #8°(F2)=(p+1-0)(p + 1 + 1) is prime

e GLS method using (Extended) Twisted Edwards coord., p = 2127-1 : ted1271gls

E'[F,: —ux*+y?=1+109ux*y*, u=2+icFp, #F)=@P+1-p+1+1) =4r,
r prime

* We ran each implementation 10 times on targeted processors and averaged the timings
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Standard curve (256 bits): cost of [k]P in cycles
Intel Core 2 Duo

Method

Relative
reduction

(%)

AMD Opteron

Cost
reduction

(%)

Hisil et al. [HWC09] 468000 . . .
Jac256189 (this work) 337000 28% /13%| 274000 - /1 11%
Curve25519 [GTO07] 386000 . 307000 -

Twisted Edwards curve (256 bits):

Intel Core 2 Duo

Relative

reduction

AMD Opteron

Cost
reduction

(%)

(%)

Hisil et al. [HWC09] 362000 h ; .
Ted256189 (this work) 281000 22% /27%| 232000 - /124%
Curve25519 [GTO07] 386000 : 307000 i,
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Standard curve using GLS: cost of [ky]P + [k;](AP) in cycles

Intel Atom Intel Core 2 Duo AMD Opteron
Relative Relative Cost
Method reduction reduction reduction
(%) (%) (%)
Galbraith et al. [GLS09] * | 832000 : 332000 . 341000 .
Jac1271gls (this work) 644000 23% / - 252000 24% /35%) 238000 30% /22%
Curve25519 [GTO07] . . 386000 , 307000 B

Twisted Edwards curve using GLS:

Intel Atom Intel Core 2 Duo AMD Opteron

Relative Relative Cost

reduction reduction reduction

(%) (%) (%)

Galbraith et al. [GLS08] * 732000 - 295000 - 295000 -
Ted1271gls (this work) 588000 20% / - 229000 22% / 41%| 211000 28% /31%
1 Curve25519 [GT07] g _ 386000 ; 307000 i
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Recent improvements!! W

Intel Core 2 Duo E6750

(i;libsrglgth et al. 295000 ()
| ] ‘ (1) Our own measurements, same
Ted1271gls 210000 299, platform, same compiler
9 (2) eBACS, accessed 08/2010
AMD Opteron 275 (http://bench.cr.yp.to/results-dh.html)
Galbraith et al
: (1)
[GLS09] 284000 ‘
Ted1271gls 200000 30%
Intel Xeon 5130
Galbraith et al
: (2)
[GLS09] 323000 '
Ted1271gls 213000 34%,
AMD Phenom Il X4 940 / 955
Galbraith et al
: (1) (2)
[GLS09] 255000 Y /262000 '
Ted1271gls 181000 29% / 31%
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¢ Thorough bottom-up optimization process (field/point/scalar arithmetic levels)

* Proposed several optimizations taking into account architectural features

* New implementations are (at least) 30% faster than state-of-the-art
implementations on all x86-64 CPUs tested

* Optimizations can be easily extended to other implementations using fixed point P,
digital signatures and different coordinate systems/curve forms/underlying fields
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More details can be found in:

* P.Longa, “Speed Benchmarks for Elliptic Curve Scalar Multiplication”,
07/2010. Available at:

http://patricklonga.bravehost.com/speed_ecc.html

* P. Longa and C. Gebotys, “Analysis of Efficient Techniques for Fast Elliptic
Curve Cryptography on x86-64 based Processors”, in Cryptology ePrint
Archive, Report 2010/335, 2010.

Patrick Longa University of Waterloo e



nces

[GLSO08] S. Galbraith, X. Lin and M. Scott, “Endomorphisms for Faster Elliptic Curve Cryptography on a Large Class of
Curves,” in Cryptology ePrint Archive, Report 2008/194, 2008.

[GLS09] S. Galbraith, X. Lin and M. Scott, “Endomorphisms for Faster Elliptic Curve Cryptography on a Large Class of
Curves,” in EUROCRYPT 2009.

[GLSO1] R. Gallant, R. Lambert and S. Vanstone, “Faster Point Multiplication on Elliptic Curves with Efficient
Endomorphisms,” in CRYPTO 2001.

[GTO7] P. Gaudry and E. Thomé, “The mpFq Library and Implementing Curve-Based Key Exchanges,” in SPEED 2007.
[HWCO08] H. Hisil, K. Wong, G. Carter and E. Dawson, “Twisted Edwards Curves Revisited,” in ASTACRYPT 2008.

[HWCO09] H. Hisil, K. Wong, G. Carter and E. Dawson, “Jacobi Quartic Curves Revisited,” in Cryptology ePrint Archive,
Report 2009/312, 2009.

[LGO8] P. Longa and C. Gebotys, “Setting Speed Records with the (Fractional) Multibase Non-Adjacent Form Method for
Efficient Elliptic Curve Scalar Multiplication,” CACR technical report, CACR 2008-06, 2008.

[LMO8] P. Longa and A. Miri, “New Composite Operations and Precomputation Scheme for Elliptic Curve Cryptosystems
over Prime Fields,” in PKC 2008.

[Mo6101] B. Moller, “Algorithms for Multi-Exponentiation,” in SAC 2001.

[Scott] M. Scott, “MIRACL — Multiprecision Integer and Rational Arithmetic C/C++ Library,” 1988-2007.

Patrick Longa University of Waterloo e



Efficient Techniques for High-Speed

Elliptic Curve Cryptography

IIIIIIIIIIII

Waterloo

S



