

Mixed Bases for Efficient Inversion in F((2²)²)² and Conversion Matrices of SubBytes of AES

Information Transfer Laboratory Okayama University, Japan <u>Yasuyuki Nogami</u>, Kenta Nekado, Tetsumi Toyota, Naoto Hongo, and Yoshitaka Morikawa

Research background (1)

Odd characteristic extension field

- Cryptographic applications
 - Pairing-based cryptography with elliptic curves
 - Efficient arithmetic operations
 - Using several kinds of bases in mixture

they respectively have efficient calculations

- Modular polynomials
 - Irreducible binomials, irreducible trinomials
 - Cyclotomic polynomials
- Bases
 - <u>P</u>olynomial basis : <u>multiplication</u>
 - <u>N</u>ormal basis : <u>Frobenius mapping</u>
 - Gauss period normal basis (GNB)

characteristic

Research background (2)

Itoh-Tsujii inversion algorithm (ITA)

- Multiplications by conjugates
- Frobenius mappings

$$X^{-1} = \left(X^p \cdots X^{p^{m-1}}\right) \left(X \cdot X^p \cdots X^{p^{m-1}}\right)^{-1}$$

subfield inversion

- In the case of characteristic two
 - Frobenius mapping is equivalent to squaring.

$$X^{-1} = \left(X^2 \cdots X^{2^{m-1}}\right)$$

Normal bases efficiently work for ITA.

motivation

Research background (3)

In the case of pairing-based cryptographies...

- Binary extension fields \mathbb{F}_{2^m}
- Ternary extension fields \mathbb{F}_{3^m}
- Other odd characteristic extension fields
 - Parameters
 - -p: 160 bits 256 bits
 - *m* : 2,3,4, ..., 20
 - Research targets
 - Vector multiplication algorithm
 - Exponentiation and scalar multiplication for rational points
 - For using several kinds of bases in mixture
 - <u>Bases conversion matrices</u> are required.
 - our previous work : GNB-based derivation

Then, as an application ...

• \mathbb{F}_{2^8} inversion for SubBytes of AES

Then, as an application ...

• \mathbb{F}_{2^8} inversion for SubBytes of AES

However, ...

- When p = 2 and m = 8 for AES, it is not satisfied...

NO problem. Full search !

 $2^8=256~$ the order is very small !

- Once I had lost the motivation, with respect to the conjugates, <u>8 variants</u> existed for the pair of conversion matrices ${f M},~{ar M}$

The detail of AES

AES also needs affine / inverse affine transforms

Previous works

According to some previous works, there are

432 towering constructions of $\,\mathbb{F}_{((2^2)^2)^2}$.

– For each, there are 8 variants of ${f M},\,{f A}{f M}$.

Conversion matrices

Binary vectors are multiplied by the matrices.

Hamming weights of row vectors

Efficient conversion matrices

good or bad !?

The **MAXIMUM** Hamming weight of row vectors is ...

The 432 constructions **[arely** had <u>good – good</u> conversion matrices.

Notations for the efficiency

Notations with good and bad

good – good – bad construction

Based on this good – good – bad construction,

the idea of *mixed bases* is applied.

Main idea – the first mix –

If the output uses other type of basis ...

without loss of efficiency

Main idea – the first mix –

Main idea – the first mix –

If the output uses other type of basis ...

without loss of efficiency

Extension of the idea – the second mix –

If normal bases can be partially applied ...

Extension of the idea – the second mix –

If normal bases can be partially applied ...

	basis type	
\mathbb{F}_{2^2}	Normal	
$\mathbb{F}_{(2^2)^2}$	Polynomial Normal	basis is partially used in mixture.
$\mathbb{F}_{((2^2)^2)^2}$	Normal / Polynomial	the second mix !

Extension of the idea – the second mix –

If normal bases can be partially applied ...

Conclusion and future works

Mixed bases technique

good – good – bad construction

good – better – good construction

I would like to thank to the anonymous reviewers.

- Security issue for such special conversion matrices
- Total approach together with the decryption phase
- Other towering fields

– For example,
$$\mathbb{F}_{(2^4)^2}$$

Thank you for your attention !