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Differential Fault Analysis (DFA) [BS97]

Perturbation of an electronic device behavior
• Supply voltage, clock or temperature variations
• White light, ion or laser beams

Plaintext m −−−−−−−−−−−−→

Ciphertext Ĉ ←−−−−−−−−−−−−
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Differential Fault Analysis (DFA) [BS97]

Analysis of the faulty output

Identification of the perturbation

Choice of a fault model

Differentiation of correct and faulty outputs

∆Ĉ,C = f (ε, k)
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Differential Fault Analysis (DFA) [BS97]

Analysis of the faulty output

Identification of the perturbation

Choice of a fault model

Differentiation of correct and faulty outputs

∆Ĉ,C = f (ε, k)

Applications to implementations of cryptosystems

Symmetric: DES [BS97], AES [DLV03], [HS04] . . .

Asymmetric: RSA [BDL97], RSA-CRT [BDL97], . . .

Stream ciphers: RC4 [HS04, BGN05], A5/1 [GKW05],
Grain-128 [BCC+09], . . .
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RSA Signature scheme

Key Generation

Pick large primes p and q and compute N = p · q
Pick a random e such that gcd(e, ϕ(N)) = 1

Compute d ≡ e−1 mod ϕ(N)

The public key is (e,N)

The private key is d

Signature

Compute S ≡ h(m)d mod N
Return (S,m)

Verification

Check that Se ≡ h(m) mod N
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Previous Work for RSA

"Why one should also secure RSA Public Key Elements"
E. Brier et al., CHES’06 [BCMCC06]
• Provide a full private key extraction
• The modulus is modified before the modular exponentiation:

Ŝ = h(m)d mod N̂

• Countermeasure: Exponent randomization

Our contributions

CHES’08 [BCG08]: Exploit faults on the modulus that occur during a
"Right-To-Left" modular exponentiations

CT-RSA’09 [BCDG09]: Generalization to "Left-To-Right" modular
exponentiations
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Fault Model

Fault model

Transient random byte modification of N
Perturbation of a modular square t bits before the end of the
exponentiation

Time location of the fault known by the attacker

Illustration of a faulty modulus N

N

⊕ ε

N̂ ε

where ε is a random byte value
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Example of Faulty Execution

(N, e) and d (N, e)

(
m, Ŝ

)
−−−−−−−−−−−−−→

"Right-to-Left" Algorithm

Input: m, d, N
Output: A = md mod N
1 : A:=1;
2 : B:=m;
3 : for i from 0 upto (n − 1)
4 : if (di == 1)
5 : A := (A · B) mod N;
6 : end if
7 : B := B2 mod N;
8 : end for
9 : return A;
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Private Key Recovery from Faulty RSA Signatures

Faulty RSA signature analysis

A part of the private key d[t] is isolated

Recovery of d[t] and N̂ from the pair
(

S, Ŝ
)

and the fault model
⇒ Guess-and-determine approach

The right pair is found with high probability

Extraction of the private key

1. Gather sufficiently many signatures faulted at different steps

2. Repeat the previous analysis by using the knowledge of already
found key parts.

3. Extract the missing bits using mathematical methods

Key extraction on a PC for a 1024-bit RSA

250 faulty signatures

A few dozen minutes for the analysis
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Exponent Randomization

Proposed by P. Kocher in 1996 [Koc96], formalized by J.S. Coron at
CHES’99 [Cor99] to defeat side channel attacks
Based on Fermat’s theorem:

mϕ(N) ≡ 1 mod N

RSA Exponent Randomization Algorithm

Input: ṁ,N, ϕ (N) , d and the length l
Output: S = ṁd mod N
1: //Randomize the private exponent
2: Pick a random λ ∈ [[0; 2l − 1]];
3: d̄ = d + λϕ(N);
4: //Perform the exponentiation
5: S = PowMod(ṁ, d̄ ,N);
6: return S;

Typically for a 1024-bit RSA : l = 20 or 32 bits
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Efficiency Against Public Key Perturbations

Difficulty due to Exponent Randomization

The fault injection isolates a part of d̄ instead of d

Prevent from cascading the analysis

Solution

Randomization is not homogeneous

Such a perturbation isolates a part of d̄

⇒ d̄ may leak information on d
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Non-Homogeneity of the Masking Operation

Details of the Randomization

d̄ = d + λϕ(N)

= d + λ(p − 1)(q − 1)

= d + λN − λ(p + q − 1)

λN

− λ (p + q − 1)

+ d

d̄ d + λϕ(N)d + λNλN

n + l − 1 n n
2 + l 0
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Principle of the Attack: MSB Case (1/2)

Approximation on MSB

d̄ ≈ d + λN

N known

× ?λ

λN=

+ dMSB 0known

+ dw 0?0

d̄[t]

⇒ Guessing (λ, dw ) enables to compute good candidate values for d̄[t]
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Principle of the Attack: MSB Case (2/2)

Theorem

Let Ŝt be a faulty signature performed under an exponent randomized by
λ, and S the corresponding correct signature. For all candidate pairs
(d ′w , λ′) ∈ [[0; 2w ]]× [[0; 2l ]], if λ′ > λ, then (8) can not be satisfied.

⇒ If t > l , λ can be exactly determined by building good values for d̄[t]

Faulty randomized RSA signatures analysis

1. Inject a fault on N during a signature
⇒ A part of the blinded key d̄[t] is isolated

2. Determine d̄[t] and N̂ from the pair
(

S, Ŝ
)

⇒ Good candidates for d̄[t] are built from a known part of the private
key dMSB , and candidate pairs for dw and λ
⇒ Candidates for N̂ are built according to the fault model

3. Update the known part of the key dMSB and repeat the analysis on
signatures faulted earlier until the most significant part of d is
determined
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Principle of the Attack: LSB Case

Previous approximation not valid for LSB

λN

− λ (p + q − 1)

+ d

d̄ d + λϕ(N)d + λNλN

n + l − 1 n n
2 + l 0

⇒ d̄ depends on an additional variable

Solution

• Get one more faulty signature to analyze (2 in practice)

• Make a variable change to boil down to the MSB case

• Solve a system to extract bits of d
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Results

Complexity evaluation

Estimated fault number

F = O
( n

w

)
signatures

Computational complexity

C = O
(

2(l+w) · n2

w

)
exponentiations

⇒ Possible improvement: combine it with Coppersmith Attacks

Key extraction on a PC for a 1024-bit Randomized RSA

l = 20 bits, w = 2 (bits of d recovered by pairs)

1000 faulty signatures

Roughly 240 exponentiations
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Conclusion

Physical robustness of the countermeasure
• Randomized Exponentiation
⇒ “Doubling Attack“ [FV03]
⇒ Small Public Exponent [FKJM+06]

• Blinding Operation
⇒ “Carry Analysis“ [FRVD08]

First fault attack against randomized RSA

• Answer an open problem raised by E. Brier et al. at CHES 2006 [BCMCC06]

• Realistic fault model

• Reasonable performances

Perspectives

• Exponent blinding does not provide a strong hardware security

• What about homogeneous blinding operation ?
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Thank you !
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