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Introduction
Random Numbers are Essential...
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Session Keys

Signature Parameters
Temporary Keys

Challenges for Authentication
Zero Knowledge Protocols

Nonces
Generation of Primes

The TRNG of insufficient quality can weaken an

otherwise strong cryptographic system (see e.g. [1]).

...and therefore random numbers must be independent,

unpredictable, and must fulfill strict statistical properties.

True Random Number Generators (TRNGs) translate

a physical phenomena (e.g. thermal noise) to the random digits.

[1] Markettos, Moore:

, CHES 2009

The Frequency Injection Attack on Ring-Oscillator

Based True Random Number Generators
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Why Random Number Generators?True
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“Any one who considers arithmetical methods

of producing random digits is, of course, in a state of sin.

For, as has been pointed out several times, there is no

such thing as a random number –

there are only methods to produce random numbers,

and a strict arithmetic procedure of course

is not such a method.”

John Von Neumann

The Research Challenge:

To discover such a random source and extraction method,

which can be reliably synthesized in modern electronic devices

such as Field Programmable Gate Arrays (FPGAs),

where cryptographic systems are usually implemeted.
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FPGA-based TRNG Randomness Sources & Designs
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Timing Jitter:

ROs- of Ring Oscillators ( ):

- Two accompanied with LFSRs (Tkacik; CHES 2002; by Dichtl)

- Fibonacci and Galois Combined by XOR (Golic; Tran. on Comp. 2006)

- 114 combined by XOR (Sunar; Tran. on Comp.; by Dichtl)

- 20 combined by XOR - the modification of Sunar’s 114 ROs design

(Wold, Tan; Int. J. of Reconfig. Comp. 2009; by Fischer)

ROs compromised

ROs

ROs

ROs

compromised

compromised

RO attack- The general frequency injection (Markettos, Moore; CHES 2009)

(Fischer & Drutarovsky, CHES 2002)- of PLLs’ output

Metastability:

- Metastable Ring Oscillator ( et.al.; CHES 2008)

- Authors mentioned difficulties realated to implementation in FPGA hardware

Vasyltsov

the
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Ring Oscillator Randomness Extraction Method
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&

restart

output

Basic RO circuitry
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Easy synthesis in FPGAs and ASICs

- Low entropy rate (acquired from
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Starting from simple RO...
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AND1

output

rst

...two inverters are replaced by buffers, still the same circuit behavior...
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AND

XOR AND22

1XOR1

‘0’

‘1’

output

Normal Ring

Oscillator Operation

(RO Mode)

rst

...buffer and inverter are replaced by XORs, which act as andbuffer inverter,

second buffer is replaced by AND (in order to have the loop symmetric)...
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rst

ctrl
AND

XOR AND22

1XOR1 AND

XOR AND22

1XOR1

output

Transition Effect Ring

Oscillator Operation

(TERO Mode)

...both XORs can be switched from inverter to buffer logic function simultaneously

what can cause oscillations in the circuit if the feedback path is long enough ...
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Isolated TERO loop

Internal

terout

Single CLB Implementation

clr

tffout

tffout2

rst

ctrl INVAND

XOR AND22

1 1XOR1

INV2

INV3

INV4

INV5

TFF

TFF2

Isolated TERO loop

AND

XOR AND22

1XOR1

Neighboring Logic Isolation
(in order to prevent routing of

internal TERO loop signals

outside the CLB )

Randomness Extractor
(TFF resolves whether TERO

made even or odd number

of oscillations)
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ctrl

rst

terout

tffout

nrstT = 3200 ns

ctrlT = 4000 nsrnd. bit gener.
start

rnd. bit gener. finish

TERO
oscillation

random
bit

TFF is cleared
Variation

of s# oscillation

Isolated TERO loop

Internal
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Single CLB Implementation

clr

tffout

tffout2

rst

ctrl INVAND

XOR AND22

1 1XOR1

INV2

INV3

INV4
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Single CLB Implementation in Xilinx Spartan 3E FPGA and the Oscilloscope Screenshot

Isolated TERO loop

AND

XOR AND22

1XOR1

tffout2INV2 TFF2
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Transition Effect Ring Oscillator (TERO)
TERO Circuitry Simulation ResultLT Spice
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1 sμ 3 μs

3.02 μs 3.10 μs
0 V

0 V

2.5 V

3.06 μs

2 μs

ST MT

2.5 V

T - width of pulse

when the oscillations

are started

S T - width of pulse

when the oscillations

disappear

M

terout

ctrl edge ctrl edge

TT ≈ 5 ns

T - period of a

single TERO

oscillation

T
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The raised pulse plays a crucial role...shortening of

1 sμ 3 μs

3.02 μs 3.10 μs
0 V

0 V

2.5 V

3.06 μs

2 μs

ST TT ≈ 5 ns MT

2.5 V

T - width of pulse

when the oscillations

are started

S T - width of pulse

when the oscillations

disappear

MT - period of a

single TERO

oscillation

T

terout

ctrl edge ctrl edge

1T 2T

T - each oscillation

(average) pulse

shortening factor

D

DT T T= -1 2

DT ≈ 10 ps T ≈ 80 psD
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TERO vs. RO comparison using VHDL Macro-Model
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VHDL Macro-Model of TERO (and RO - when ctrl = ‘1’ for XOR and ctrl = ‘0’ for XOR )1 2

wire CNT

results file

s
ti
m

u
li

noise file 1 noise file 2 noise file 3 noise file 4
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ctrl

smp

wire wire wireXOR AND XOR AND2211
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The ModelSim simulation results of the VHDL structure for both TERO and RO modes
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“Remember that all models are wrong;

the practical question is how wrong do they

have to be to not be useful.”

George E. P. Box
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“Remember that all models are wrong;

the practical question is how wrong do they

have to be to not be useful.”

George E. P. Box

We need the useful mathematical model in order to:

- show that “randomness” relies on the physical phenomena

- determine how much “randomness” is available

- fulfill TRNG evaluation criteria

- persuade a community on the reliability of a random number

generation method
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D Tj Tij
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- New entropy element (TERO) introduced

- High sensitivity to random processes inside

FPGA logic cells, while rejecting global perturbation

- Inner testability - counting of number of oscillations

- Basic mathematical model was introduced

- Two XOR-combined TERO channels can pass

the NIST 800-22 statistical tests

- Speed from 100kpbs to 250 kbps per single TRNG

- Stateless entropy concept

- Performance of TEROs cluster appears to be

independent from the position in FPGA and from

implementation in another identical FPGA board,

and from working conditions
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