1/24

Pushing the Limits of SHA-3
Hardware Implementations to Fit

on RFID

Peter Pessl and Michael Hutter

Peter Pessl and Michael Hutter CHES 2013, August 21, 2013 ﬁ'!u

Motivation Keccak Our Designs Results Comparison Conclusions

Co-Author

Peter Pessl
m VHDL implementation of KECCAK

m Currently working on integrating KECCAK
into low-resource ECDSA

Peter Pessl and Michael Hutter CHES 2013, August 21, 2013 ﬁ'!u

Outline

Motivation

Keccak

Our Designs

Results
Comparison

@ Conclusions

o
Peter Pessl and Michael Hutter CHES 2013, August 21, 2013

(=)

12N Ge

Ty,

Motivation Keccak Ou

s Results Comparison Conclusions

Motivation

m KECCAK as winner of the SHA-3 contest

m Main goal: what are the lower bounds of KECCAK in terms of area
and power?

= How do highly serialized (8 or 16-bit) versions perform on ASICs?

m Suitable candidate for low-cost
passive RFID?

» Power should be less than 15 uW
at 1 MHz (reading range)
» Few milliseconds of response time
OK (not recognizable by humans)
m Follow the RFID design principle:
“few gates and many cycles’ as
suggested by S. Weis [10]

=] [
Peter Pessl and Michael Hutter

CHES 2013, August 21, 2013

Ty,

Motivation Keccak Our Designs Results Comparison Conclusions

Keccak

m Cryptographic sponge function family
m Instances call b-bit permutations f with parameters r, c:
> r bits of rate
» ¢ bits of capacity (defines the security level of 2¢/2)
» b=r+c=25,50,100,200,400,800 or 1600
m SHA-3 instance example
» b =1600 with r = 1088 and ¢ = 512
> 256-bit security

Padded message | Output
| ’

Y
Holdh ‘f\ ‘f\ ‘f\ | ‘f\ _

o> o> o> | > >
CI 0 » » » : > >

-/ —/ | —/
Absorb | Squeeze

Ty

Peter Pessl and Michael Hutter CHES 2013, August 21, 2013

otivation Keccak Our Designs Results Comparison Conclusions

The Keccak-f Permutation @

m Block permutations on a b =5 x 5 x 2bit
state matrix, where ¢ € [0, 6]

m Consists of 12 + 2/ rounds with 5
sub-functions:)

© Adds the parity (linear diffusion)

Cyclic shifts of lanes (slice dispersion)

Ve

<D

p
7w Slice permutation (break alignment)
X

Combination of rows (non-linearity) [TTT1]

Add round constant (avoid symmetry) X

~

Peter Pessl and Michael Hutter CHES 2013, August 21, 2013 ﬁ'!u

Motivation Keccak Our Designs Results Comparison Conclusions

Design Exploration and Decisions

m We target KECCAK[1600] and KECCAK[300]
> ...because most likely to be standardized

For each target, we implement two versions:

» 8-bit version: aims for lowest area

» 16-bit version: trading area for higher throughput
Memory type and 1/0O interface

» Use of RAM macros for state storage
» Standardized 8/16-bit AMBA APB interface

m Constants: LUT vs. LFSR

» Round constants for p and ¢ stored in LUT
> No dedicated LFSR unit required

Peter Pessl and Michael Hutter CHES 2013, August 21, 2013 ﬁ'!u

Motivation Keccak Our Designs Results Comparison Conclusions

Lane-wise vs. Slice-wise Processing

m Lane-wise processing
» Often applied in SW
> A lane with 2¢ bits is stored in 8,16, 32, or
64-bit registers

» Can be combined with bit interleaving:
v" Helps to improve the performance of p
v Reduces costly instructions necessary for

rotation

m Slice-wise processing

» More HW oriented

» Round function has to be re-scheduled

» Example: Jungk and Apfelbeck [6]
V" Processed 8 slices in parallel
v p permutation required extra registers and

special RAM addressing

v Stored the state in 25 8 x 8 RAMs

Peter Pessl and Michael Hutter CHES 2013, August 21, 2013

Ty,

Motivation Keccak Our Designs Results Comparison Conclusions

Idea

m Apply lane interleaving
V" Store pairs of lanes interleaved in RAM
v Each 8-bit word in RAM contains information
about 2 lanes and 4 slices
v Allows to efficiently process 4 slices instead of 8
m Combine lane and slice-wise processing in a
single datapath
Lane-processing phase:
V' Apply p on two entire 64-bit lanes
v No RAM addressing issues (implicit rotation)
Slice-processing phase:
v Process 4 slices

m Allows usage of 200 x 8 RAM

slice

Ty,

Peter Pessl and Michael Hutter CHES 2013, August 21, 2013

Our Designs

Lane Interleaving

m Two shared 64-bit registers rO and rl

» Used to store 2 lanes or 4 slices
» r0 stores odd lanes and r1 stores even lanes

m Only 24 lanes interleaved
» Lane[0,0] has zero rotation offset

r0 / 64bit

I

Deinterleave

I

rl / 64bit

Peter Pessl and Michael Hutter CHES 2013, August 21, 2013 ﬁ'!u

Motivation Keccak Our Designs Results Comparison Conclusions

Ressource Requirements

Two shared 64-bit registers

Interleave/Deinterleave unit
Two p units

» Rotate two lanes in parallel
» Two 4-bit rotation registers and Barrel shifters

Slice unit

» Reuse of rotation registers to store parities for ©
Re-schedule of round function (25 rounds):

» First round: po ©
» 23 rounds: po@oroyor
» Last round: toyor

Peter Pessl and Michael Hutter CHES 2013, August 21, 2013 ﬁ'!u

Our Designs ults Comp:

The Datapath Architecture

[Datapath N T \\1

| |

: Y |

| |

RAM mr%@ 4 5!
, |

RAM |n<-}7L . 5 25 sg:;g::: i

| 1/ 25/ |

l\ ’/

Peter Pessl and Michael Hutter CHES 2013, August 21, 2013 ﬁ'!u

rotations[5:2] rotations[1:0]

m Load and deinterleave two 64-bit lanes (16 cycles)
m Apply p on entire lanes

» 1 init cycle for pre-setting rotation register
> Implicitly rotation by specified offsets using Barrel shifter

m Store two 64-bit lanes back interleaved (16 cycles)

Peter Pessl and Michael Hutter CHES 2013, August 21, 2013 ﬁ'grlag_

Motivation Keccak Our Designs Results Comparison Conclusions

Slice Processing

m Load and deinterleave 4 slices with consecutive z-coordinates (13
cycles)

m Permutation of ©, ., v, 7 in a single cycle
m Parities of previous slice columns are stored in a 5-bit parity register
m Resources for parity register are shared with rotation registers for p

- — — — — — — — — — — — —

/ Slice Unit

RoundConstant bit bypass toxet bypass 6

Peter Pessl and Michael Hutter CHES 2013, August 21, 2013 ﬁIU

Motivation Keccak Our Designs Results Comparison Conclusions

8-bit vs. 16-bit Version

m Drawbacks of 8-bit version

» Narrow memory interface
» Asymmetric datapath

v’ 25-bits for slice unit
V' 8-bits for the two p units
m Trading area for higher throughput

> 16-bit RAM macro instead of 8-bit
v Allows writing of single bytes

» Two 8-bit p units (instead of 4 bits)
v Twice as fast

» No modifications for slice unit (e.g., process 8 slices instead of 4)

Peter Pessl and Michael Hutter CHES 2013, August 21, 2013 ﬁ'!u

Motivation Keccak Our Designs Results Comparison Conclusions

Results

Table 1 : Area of chip components for Table 2 : Area of chip components for

our low-area version (8-bit)

our higher-throughput version (16-bit)

| Component || GEs| [Component || GEs |
Datapath 1922| |Datapath 2083
rO+rl 1213 r0+rl 1205
Slice unit 382 Slice unit 382
p units 38 p units 119
Controller 598 | | Controller 646
LUT 144 |LUT 144
AMBA 10 69| |[AMBA IO 69
Core Total 2927 | |Core Total 3148
RAM macro 2595| |[RAM macro 2750
Total 5522 | Total 5898

Peter Pessl and Michael Hutter CHES 2013, August 21, 2013 ﬁ'!u

Motivation Keccak

Our Designs Results Comparison

Conclusions

Comparison with Related Work

Table 3 : Comparison of 1600-bit KEccak, SHA-1, and SHA-256

Techn. Area Power | Cycles/ Throughput

[nm] | [GEs] |[¢W/MHZz]’ Block” | @1MHz [kbps]

Ours, 8-bit version 130 5522 125 22570 48.2
Ours, 16-bit version 130 5898 13.7 15427 70.5
KECCAK team [4] 130 | 9300 N/A 5160 210.9
Kavun et al. [7] 130 | 20790 44.9 1200 906.6
SHA-1[9 130 5527 23.2 344 1488.0
SHA-1[5 350 8120 - 1274 401.8
SHA-256 [8 250 8588 - 490 1044.0
SHA-256 [5 350 | 10868 - 1128 454.0

“Power values of designs using different process technologies are omitted
bBlocksizes: 1600-bit KEcCAK: 1088 bits[3], SHA-1 & SHA-256: 512 bits

Peter Pessl and Michael Hutter CHES 2013, August 21, 2013

Ty,

Motivation Keccak Our Designs Results Comparison Conclusions

What About Keccak[800]?

m Optimizations
» RAM size halved
> Size reduction of internal registers
v~ 100 bits (2 x 50) instead of 128 (2 x 64)
v Memory needed to store 4 slices or 2 lanes (2 x 32)
» KECCAK-f is twice as fast
» Round reduction from 24 to 22

m Synthesis results:

Table 4 : KECCAK[800] results

Techn. | Area Power | Cycles Throughput
Keccak[800] [nm] | [GEs] |[uW/MHz] | Block’ | @1MHz [kbps]
8-bit version 130 | 4627 12.4 | 10712 26.9
16-bit version 130 | 4945 13.1 7464 38.6

“Blocksizes: 800-bit KECCAK: r = 288 bits [3]

Peter Pessl and Michael Hutter CHES 2013, August 21, 2013

Ty,

Motivation Keccak Our Designs Results Comparison Conclusions

Further Research Suggestions

m Find own trade-off between area and speed
» Broader memory interfaces (e.g., 32 bits) require more area...
» Factor-n lane interleaving?
m Maybe more compact solutions that provide hashing capabilities, e.g.,
PRESENT, AES?
m Integration
» External memory needed or is it already included in the system?
» 8-bit AMBA APB interface available
m More “lightweight”? Change of KECCAK properties, e.g., collision
resistance or security level (< 256 bits)

m Protection against implementation attacks, hiding (e.g., shuffling) or
masking (e.g., secret sharing[1, 2])

Peter Pessl and Michael Hutter CHES 2013, August 21, 2013 ﬁ'!u

Motivation Keccak Our Designs Results Comparison Conclusions

Conclusions

m Serialized KECCAK[1600] requires ~ 5.5 — 6 kGEs

m Less than 15 yW at 1 MHz on 130 nm CMOS
m 8 vs. 16-bit version?

» Spend 376 GEs for a 32 % speed improvement
> No power differences

m KECCAK[800] preferred for RFIDs

900 GEs smaller in size, i.e., 4.6 kGEs

With external memory available: only 2016 GEs necessary
Twice as fast as KECCAK[1600]

10.7 ms per block at 1 MHz

But almost no power savings

v

v vy VvYy

Peter Pessl and Michael Hutter CHES 2013, August 21, 2013

Ty

Motivation Keccak Our Designs Results

References |

Comparison Conclusions

G. Bertoni, J. Daemen, N. Debande, T.-H. Le, M. Peeters, and G. Van Assche
Power Analysis of Hardware Implementations Protected with Secret Sharing.
Cryptology ePrint Archive: Report 2013/067, February 2013.
G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche.
Building Power Analysis Resistant Implementations of Keccak.
August 23-24, 2010.

In Second SHA-3 Candidate Conference, University of California, Santa Barbara,
The Keccak SHA-3 submission.

G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche.

Submission to NIST (Round 3), 2011.

Keccak Implementation Overview, V3.2, 2012.

=] [
Peter Pessl and Michael Hutter CHES 2013, August 21, 2013

G. Bertoni, J. Daemen, M. Peeters, G. Van Assche, and R. V. Keer.

Ty

Conclusions 22 /24

References |l

M. Feldhofer and C. Rechberger.
A Case Against Currently Used Hash Functions in RFID Protocols.
In Workshop on Information Security - 1S, Montpellier, France, 2006.

B. Jungk and J. Apfelbeck.
Area-Efficient FPGA Implementations of the SHA-3 Finalists.
In Reconfigurable Computing and FPGAs—ReConFig 2011, International
Conference, November 30-December 2, Cancun, Mexico, 2011, pages 235-241,
2011.

E. B. Kavun and T. Yalcin.
A Lightweight Implementation of Keccak Hash Function for Radio-Frequency
Identification Applications.
In S. B. O. Yalcin, editor, Workshop on RFID Security — RFIDsec 2010, 6th
Workshop, Istanbul, Turkey, June 7-9, 2010, Proceedings, volume 6370, pages
258-269. Springer, 2010.

o (w1 =

Peter Pessl and Michael Hutter CHES 2013, August 21, 2013 ﬁ-!u
razn

it
<

0
¢

Conclusions 23 /24

References Il

M. Kim, J. Ryou, and S. Jun.
Efficient Hardware Architecture of SHA-256 Algorithm for Trusted Mobile
Computing.
In Information Security and Cryptology—Inscrypt 2008, 4th International
Conference, Beijing, China, December 14-17, 2008, Revised Selected Papers.

M. O'Neill.
Low-Cost SHA-1 Hash Function Architecture for RFID Tags.

In S. Dominikus, editor, Workshop on RFID Security 2008 (RFIDsec08), pages
41-51, July 2008.

S. A. Weis, S. E. Sarma, R. L. Rivest, and D. W. Engels.

Security and Privacy Aspects of Low-Cost Radio Frequency ldentification Systems.

In Security in Pervasive Computing, 1st Annual Conference on Security in Pervasive
Computing, Boppard, Germany, March 12-14, 2003, Revised Papers.

o (w1 =

Peter Pessl and Michael Hutter CHES 2013, August 21, 2013 ﬁ-!u
razn

Motivation Keccak Our Designs Results Comparison Conclusions

Thanks for your attention!

Questions?)

Michael Hutter
michael.hutter@iaik.tugraz.at
Graz University of Technology

Peter Pessl and Michael Hutter CHES 2013, August 21, 2013 ﬁIU

michael.hutter@iaik.tugraz.at

	Motivation
	Keccak
	Our Designs
	Results
	Comparison
	Conclusions

