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Context of this Work

Cryptography (confidential keys)
— Unpredictable, non manipulable, good statistical properties

Ideal RNG = generates independent and uniformly distributed random

numbers DRNG = Deterministic

Random Number Generator

In practice

TRNG = True Random
Number Generator

TRNGs exploit physical random processes (e.g. radioactivity, electrical
noise, jitter ...)

Unpredictability = entropy per output bit of the TRNG (physical model

of the entropy source and extraction)
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Extracting Random Numbers from lJitter
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Simple TRNG using a flip-flop and two oscillating s:gnals [1 ]

E

* Challenges

- Jitter zone around a signal edge is very short (<1% of the oscillation period)
- Synchronisation (be in time with the jitter)

[1] R.C. Fairfield, R.L. Mortenson and K.B. Coulthart, "An LSI Random Number Generator (RNG)”, in the proceedings of

CRYPTO 84 on Advances in cryptology, pages 203-230, NY USA, 1985. 2/23



Self-timed Ring based TRNG

* STR = oscillators in which several events propagate without
colliding

* STR highly suitable as source of random jitter [2]

e Self-timed ring based TRNG (STRNG) presented in [3]

— TRNG principle and basic mechanisms
— Prototype in Altera and Xilinx FPGAs
— Statistical evaluation at 16 Mbit/s

— Main features: extracts randomness from the jitter of a STR, regardless the
jitter magnitude + no synchronisation is needed

[2] A. Cherkaoui, V. Fischer, A. Aubert and L. Fesquet, “Comparison of Self-timed and Inverter Ring Oscillators as Entropy
Sources in FPGAs”, in Design, Automation and Test in Europe conference, DATE12, pages 1325-1330, March 2012.

[3] A. Cherkaoui, V. Fischer, L. Fesquet and A. Aubert, “A Self-timed Ring Based True Random Number Generator”. In the
International symposium on advanced research in asynchronous circuits and systems — ASYNC 2013. Pp. 99-106. Santa
Monica, California, USA (May 2013). 3/23



Contribution

A stochastic model for the STRNG

— A simple entropy assessment : a lower bound for the entropy per output
bit
— No empirical parameter, only physical/measurable parameters

* A design strategy using the model and measurements

* Design in Altera Cyclone Ill and Xilinx Virtex 5 FPGA:s,
evaluation at 400 Mbit/s
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1. Self-timed ring oscillators : state of the art
2. STRNG architecture and principle
3. STRNG stochastic model
— Lower bound of entropy per output bit
— Practical use of the model

4. STRNG design and evaluation

5. Conclusion
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STR Architecture
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(a) Stage structure and truth table (b) Self-timed ring architecture

[4] I. E. Sutherland, “Micropipelines”, in Communications of the ACM (Association of Computing Machinery),
Vol/Issue:32/6, pages 720-738, 1989. 6/23



The Charlie effect

* Propagation delay of a Muller gate depends on the relative
arrival times of its two inputs

Charlie Effect  The closer are the input events, the
longer is the stage propagation delay

* Evenly-spaced propagation locking mechanism

> (€

charlie eftect

Influence of the Charlie effect on the
propagation of two events
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Multiphase STR

* Several events propagate evenly-spaced in time thanks to inherent
analog mechanisms (Charlie effect)
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time
Evenly-spaced propagation of 2 events in a 5-stage STR

* If the number of events N and the number of stages L are co-prime,
the ring exhibits L different equi-distant phases with A¢p= %

[5] S. FAIRBANKS, “High Precision Timing using Self-timed Circuits”, Technical report no. UCAM-CL-TR-738,
University of Cambridge, Computer Laboratory, January 2009, url:
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Jitter in STR

Timings between successive events are auto-controlled

— Jitter locally generated in the ring stage barely propagates to other
stages

— Deterministic variations are attenuated

e \/irtex 5

5 === Cyclone 3
o Sps/div
P 100K #/ div
¢ o] A}—M”‘"’\
Period histogram of a 96-stage STR in
o
4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 Altera Cyclone ] (N=48)

Number of ring stages

STR Period jitter with N=L/2 vs. the number of stages

[2] A. Cherkaoui, V. Fischer, A. Aubert and L. Fesquet, “Comparison of Self-timed and Inverter Ring Oscillators
as Entropy Sources in FPGAs”, in Design, Automation and Test in Europe conference, DATE12, pages 1325- 9/23
1330, March 2012.
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STRNG Architecture and Principle
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Self-timed Ring Entropy Extraction j

STRNG core architecture and entropy extraction principle

* STR: Multiphase, evenly-spaced signals
* Entropy extractor: Sample each signal with a reference clk, XOR tree

* STR phase resolution: ~ jitter interval around an output edge
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Modeling of the Entropy Extraction (1)

° A 2 A@ 2
* STR output signals N-TFoh)  NEo)
— Mean time between 2 successive AA
events -> intrinsec locking ! !
j-1 A(O :
— Effective event timing -> jitter and its
standard deviation C, \

mechanisms of the STR C, /

A A
X, = N(—7§0,02) DX, = N(7¢,02)

>

|
I
r 0 X ; time
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O b" ective Detailed view of two successive events
— Compute the probability that the in the STR

sampled bit is ‘1" or ‘0’
— Compute the entropy per output bit
of the TRNG

H =—P(u)log, (P(u)) - (L— P(u)) log, (1- P(u)) o



Modeling of the Entropy Extraction (2)

* Probability to sample a value
‘U’ in the signal ¥
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* Probability to sample a value ‘U’ in the signal ¥

t-T/4L t+T /4L t-T /4L, t+T/4L
P(u) = @( ) +( ) —29( ) ( )
O O O O

* Entropy is minimum when t=0

Hm = _P(u)tzo Iogz(P(u)tzo) o (1_ P(u)tzo) |Og2(1— P(u)tzo)

with  P(u),_, =1- 2(1)(4-[—0) - 2((1)(4-[—0))2
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Entropy in Time and Lower Entropy Bound
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Lower entropy bound as a function of
the number of STR stages

# Lower entropy bound increases with the number of ring stages
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Arithmetic Post-processing

* Data compression with a parity filter
— Increased entropy per output bit, but at reduced bit rate

I:)(u)output =0.5- 2n_1(P(u)input o OS)n

P N <.« DFF > c.x DFF, [» .« DFF
T DFF ’7 ’7 T

? ?
+
TTTTTT

Architecture of a 4th order parity filter

* Tune the area/bit rate trade-off for the STRNG

[6] R. B. Davies, « Exclusive OR (XOR) and hardware random number generators » (2002). url:
http://www.robertnz.net/pdf/xor2.pdf 15/23



Practical Use of the Model

C_

* Measure the STR oscillation periodand |
jitter magnitude o /

H. -
* Plot the lower entropy bound curve as i

function of the number of stages 1 ;/

= -
=
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L
Lower entropy bound as a function of

the number of STR stages

e Select the number of STR stages L so that Hm>0.99

* OR: Select L depending on size/area requirements then
compute n the filter order to achieve Hm>0.99

16/23



1. Self-timed ring oscillators : state of the art
2. STRNG architecture and principle
3. STRNG stochastic model
— Lower bound of entropy per output bit
— Practical use of the model

4. STRNG design and evaluation

5. Conclusion



STRNG Implementation

One 4-input LUT (Look-up-table) per stage

- 2 inputs for the signals F and R, 1 feedback for the memory state and 1
initialization input (SET or RESET)

Take care of stage structures and placement to avoid bottlenecks

Hard-wired connexions between stages and adjacent flip-flops

Sampling clock: external 16 MHz quartz + PLL for multiplication

Data transfer: LVDS (Low Voltage Differential Signaling) transfer
to acquisition card, acquisition at 400 Mbit/s

Generic software parity filter for evaluation purposes
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Measurement of the Entropy Source

* Experimental setup

- Wideband digital oscilloscope (3.5 GHz bandwidth
and 40 Gsample/s) + Lecroy statistical tools

- Differential oscilloscope probes

- Low Voltage Differential Signaling (LVDS) FPGA
outputs

* STR jitter measurement

- Measure the minimum jitter that can be present in
the device

- Jitter magnitude around one signal edge is estimated
by ([3]) O perios

O~
J2

e Phase resolution measurement

- Mean phase resolution is computed using the
following equation T

A=
T
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Measurement Results

e All tested configurations showed a Gaussian jitter profile

(a) | ’ (b)
Period distribution histogram of a 127-stage STR with 64 tokens
(a) Altera Cyclone Il (b) Xilinx Virtex 5 (scales are 5 ps per horizontal division and 100 kilo
sample per vertical division)

Device | STR | Measurements

LIN| T | &y

63 [ 32 [2.44 ns[19.3 ps e Jitter magnitude
Cyclone [127] 64 [3.11 ns|12.2 ps
11 [255[128]2.93 ns| 5.7 ps Ocyelone = 2 PS
511(256(3.31 ns| 3.2 ps
6332 [2.82 ns[21.4 ps Ovirex = 2-9PS

127] 64 |2.83 ns|11.8 ps
Virtex 5|255[128(2.45 ns| 5.5 ps
511|256|2.87 ns| 2.9 ps

19/23
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Evaluation : AIS31 Test Suite

Device STR Raw data Model | Compressed data
L | Ay |T1-T4|T5-T8| Hp, [nmin|np, .. | Throughput

63 (19.3 ps| 0% | 0/4 || O - 7 | 57 Mbit/s
Cyclone|127|12.2 ps| 0% | 0/4 ||0.02| 483 | 4 | 100 Mbit /s
IIT  |255( 5.7 ps| 45% | 1/4 [|0.58] 7 2 | 200 Mbit/s
(Coore=2PNETT[ 3.2 ps | 99% | 3/4 [[0.91] 2 | 2 |200 Mbit/s
63|21.4ps| 0% | 0/4 | O - 8 | 50 Mbit/s

127]11.8 ps| 10 % | 1/4 }|0.13] 60 3 | 133 Mbit/s

Virtex 5[255| 5.5 ps | 58% | 2/4 |0.78| 4 2 | 200 Mbit/s
(e 2300 511] 2.9 ps | 61% | 3/4 [0.97] 2 2 [ 200 Mbit /s

Statistical evaluation results for the STRNG at 400 Mbit/s

T1-T4 : FIPS 140-1 passing rates (1000 sequences of 20.000 bits)
T5-T8 : passing tests out of 4 (~ 1 Mbyte of data)
H . : lower entropy per bit bound

Nin : minimal filter order to achieve 0.99 (model)

N, :filter order used in practice to pass T1-T8 tests

Throughput : effective bit rate after compression
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Evaluation : NIST Test Suite

* NIST SP 800-22 test suite on 1000 sequences of 1.000.000 bits
with a 0.01 confidence level

 STRNG with L=511 and compression rate of 3 passes all NIST
tests in Altera Cyclone Il
- Effective throughput = 133 Mbit/s

 STRNG with L=511 and compression rate of 4 passes all NIST
tests in Xilinx Virtex 5

- Effective throughput = 100 Mbit/s

[7] “A statistical test suite for random and pseudo-random number generators for cryptographic applications”.
NIST special publication (SP) 800-22 rev. 1 (2008). url: http://csrc.nist.gov/CryptoToolKit/tkrng.html 21/23
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Conclusion

e Self-timed ring based TRNG

— Extracts randomness from the jitter of a STR, regardless the jitter
magnitude

— The design is flexible: area, bit rate and security level can be tuned
with a very low design effort

— Passes AIS31 and NIST tests at high bit rates (a few hundred Mbit/s)

e A stochastic model for the STRNG

— A simple yet useful entropy assessment for the generator

— Links the security level with the physical parameters of the generator
— Uses only measurable parameters

— Approach validated in Altera and Xilinx FPGAs
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Conclusion (Not in the Paper)

] Patent

e 2 circuits (ST CMOS 28 nm and AMS CMOS .35 um)

* Future works
— Alarms, specific embedded tests (counting the number of events ...)
— Embedded measurement of the entropy source
— Robustness evaluation (voltage variations, EM attacks ...)
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Thank you



Appendix



Inverter Ring Oscillator based TRNG

IRO-based TRNG architecture [8]

* Known issues * Critical security issue
— Number of needed ROs grows — Dependence between the
exponentially with the rings (locking)

decreasing size of the jitter

— True randomness vs. Pseudo
randomness -> predictability

[8] B. Sunar, W.J. Martin, and D.R. Stinson, "A Provably Secure True Random Number Generator with Built-In
Tolerance to Active Attacks". IEEE Transactions on Computers, Vol. 58, pp. 109-119 (2007).



STR Behavior

e Bubbles and tokens abstraction

0 1 1 0 0 0 1 0
@ = 0@ 4¢

Token propagation in a self-timed ring

e Two oscillation modes

Burst Evenly-spaced

* Final state of STR for a fixed design depends on the ring occupancy
— Set at the ring initialization



Frequency Behavior

e STR final state depends on
— Charlie and drafting effect magnitude
— Forward and reverse propagation delay ratio (Dff/Drr)

— Occupancy or ratio between number of events and number
of stages (N/L)

Frax
 Maximum frequency

achieved for
No ~ fo

"~y

L-N, D

rr

! ' :
anin N() N‘maa: Number of
evenl

STR Frequency as a function of its occupancy



STR startup

re-arrange themselves as they start

A few events
propagating in the ring
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