Destroying Fault Invariant with Randomization -A Countermeasure for AES against Differential Fault Attacks

Harshal Tupsamudre, Shikha Bisht, Debdeep Mukhopadhyay (IIT KHARAGPUR)

CHES 2014

South Korea, Busan

September 24, 2014

3

- 4 週 ト - 4 三 ト - 4 三 ト

Outline

Preliminaries

- 2 LatinCrypt 2012 Infection Countermeasure
- 3 FDTC 2013 Attack
 - 4 Major Loop Hole in LatinCrypt 2012 Countermeasure
- 9 Piret and Quisquater's Attack on Infection Countermeasure
 - Attack Without Random Dummy Rounds
 - Complexity Analysis
 - Attack in Presence of Random Dummy Rounds
- Improved Countermeasure
- 7 Summary & Conclusion

Preliminaries

3

Image: A matrix

AES128

CHES 2014 (South Korea, Busan)

4 / 48 September 24, 2014

 $\begin{pmatrix} l_0 & l_4 & l_8 & l_{12} \\ l_1 & l_5 & l_9 & l_{13} \\ l_2 & l_6 & l_{10} & l_{14} \\ l_3 & l_7 & l_{11} & l_{15} \end{pmatrix}$

イロト イ団ト イヨト イヨト

3

(日) (同) (三) (三)

3

イロト イヨト イヨト イヨ

$$\begin{pmatrix} l_{0} & l_{4} & l_{8} & l_{12} \\ l_{1} & l_{5} & l_{9} & l_{13} \\ l_{2} & l_{6} & l_{10} & l_{14} \\ l_{3} & l_{7} & l_{11} & l_{15} \end{pmatrix} - S - \begin{pmatrix} S[l_{0}] & S[l_{4}] & S[l_{8}] & S[l_{12}] \\ S[l_{1}] & S[l_{6}] & S[l_{6}] & S[l_{6}] \\ S[l_{2}] & S[l_{6}] & S[l_{6}] & S[l_{6}] \\ S[l_{2}] & S[l_{6}] & S[l_{6}] & S[l_{6}] \\ S[l_{3}] & S[l_{7}] & S[l_{7}] & S[l_{7}] \\ S[l_{3}] & S[l_{7}] & S[l_{7}] & S[l_{7}] \\ \end{bmatrix} - SR - \begin{pmatrix} S[l_{0}] & S[l_{4}] & S[l_{6}] & S[l_{12}] \\ S[l_{5}] & S[l_{6}] & S[l_{6}] \\ S[l_{10}] & S[l_{6}] & S[l_{6}] \\ S[l_{10}] & S[l_{6}] & S[l_{7}] \\ S[l_{6}] & S[l_{6}] \\ S[l$$

イロト イ団ト イヨト イヨト

$$\begin{pmatrix} l_{0} & l_{4} & l_{8} & l_{12} \\ l_{1} & l_{5} & l_{0} & l_{13} \\ l_{2} & l_{6} & l_{10} & l_{14} \\ l_{3} & l_{7} & l_{11} & l_{15} \end{pmatrix} \longrightarrow \\ -MC - \begin{pmatrix} 2 & 3 & 1 & 1 \\ 1 & 2 & 3 & 1 \\ 1 & 1 & 2 & 3 \\ 3 & 1 & 1 & 2 \end{pmatrix} \longrightarrow \\ \begin{pmatrix} S[l_{0}] & S[l_{4}] & S[l_{3}] & S[l_{1}] \\ S[l_{3}] & S[l_{7}] & S[l_{11}] & S[l_{13}] \\ S[l_{7}] & S[l_{7}] & S[l_{7}] & S[l_{7}] \\ S[l_{7}] & S[l_{7}]$$

(日) (四) (王) (王) (王)

Fault Attack

CHES 2014 (South Korea, Busan)

September 24, 2014 6 / 48

Fault Attack

Only one fault sufficient to retrieve the entire secret key of AES.

3

ヨト・イヨト

< □ > < ---->

Fault Attack

Fault models to model the strength of adversary

- Bit flip Fault Model : Affects a bit of the intermediate result
- Onstant Byte Fault Model : Requires control over fault value and position
- **③** Random Byte Fault Model : No control over fault value and position
- Attacks that require both the correct and faulty ciphertext are known as differential fault attacks

Countermeasures Against Fault Attacks

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Detection Countermeasure

3

・ロン ・四 ・ ・ ヨン ・ ヨン

Infection Countermeasure

Redundant Round

3

<ロ> (日) (日) (日) (日) (日)

LatinCrypt 2012 Infection Countermeasure

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

LatinCrypt 2012 Infection Countermeasure SNLF operates on a byte and SNLF(0) = 0

10 / 48

LatinCrypt 2012 Infection Countermeasure SNLF operates on a byte and SNLF(0) = 0

September 24, 2014 1

10 / 48

LatinCrypt 2012 Infection Countermeasure

Dummy rounds occur randomly

CHES 2014 (South Korea, Busan)

LatinCrypt 2012 Infection Countermeasure RoundFunction(β , k^0) = β

LatinCrypt 2012 Infection Countermeasure RoundFunction(β , k^0) = β

CHES 2014 (South Korea, Busan)

LatinCrypt 2012 Infection Countermeasure RoundFunction(β , k^0) = β

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

CHES 2014 (South Korea, Busan)

3

<ロ> (日) (日) (日) (日) (日)

• Fault f in l_1^{10} , *i.e.*, first byte of the second row in the input of 10^{th} cipher round of AES128

- Fault *f* in l_1^{10} , *i.e.*, first byte of the second row in the input of 10^{th} cipher round of AES128
- Countermeasure infects the faulty computation twice

- Fault *f* in I_1^{10} , *i.e.*, first byte of the second row in the input of 10^{th} cipher round of AES128
- Countermeasure infects the faulty computation twice
 - After the execution of 10th cipher round

- Fault *f* in I_1^{10} , *i.e.*, first byte of the second row in the input of 10^{th} cipher round of AES128
- Countermeasure infects the faulty computation twice
 - After the execution of 10th cipher round
 - After the execution of compulsory dummy round

Image: A math a math

Image: A math a math

CHES 2014 (South Korea, Busan)

 → 13 / 48 September 24, 2014

CHES 2014 (South Korea, Busan)

IIT KHARAGPUR

September 24, 2014 13 / 48

3

イロト イポト イヨト イヨト

CHES 2014 (South Korea, Busan)

3

イロト イポト イヨト イヨト

FDTC 2013 Attack: Infection Caused by the 10th Cipher Round

• The difference between correct (R_1) and faulty computation (R_0) is:

FDTC 2013 Attack: Infection Caused by the 10th Cipher Round

• The difference between correct (R_1) and faulty computation (R_0) is:

FDTC 2013 Attack: Infection Caused by the 10th Cipher Round

• The difference between correct (R_1) and faulty computation (R_0) is:
FDTC 2013 Attack: Infection Caused by the 10th Cipher Round

() The difference between correct (R_1) and faulty computation (R_0) is:

After Infection Step, the difference is:

$$R_0 \oplus R_1 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \varepsilon \oplus SNLF[\varepsilon] \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

where $\boldsymbol{\varepsilon} = S[I_1^{10} \oplus \boldsymbol{f}] \oplus S[I_1^{10}]$

③ The differential of R_2 and β is:

$$R_2 \oplus \beta = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & SNLF[\varepsilon] \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

③ The differential of R_2 and β is:

$$R_2 \oplus \beta = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & SNLF[\varepsilon] \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

• When $R_2 = \beta$, RoundFunction $(R_2, k^0) \oplus \beta = 0$

③ The differential of R_2 and β is:

$$R_2 \oplus \beta = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & SNLF[\varepsilon] \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

• When $R_2 = \beta$, RoundFunction $(R_2, k^0) \oplus \beta = 0$ • When $R_2 \neq \beta$, RoundFunction $(R_2, k^0) \oplus \beta \neq 0$

③ The differential of R_2 and β is:

$$R_2 \oplus \beta = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & SNLF[\varepsilon] \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

• When $R_2 = \beta$, RoundFunction $(R_2, k^0) \oplus \beta = 0$ • When $R_2 \neq \beta$, RoundFunction $(R_2, k^0) \oplus \beta \neq 0$

6 \therefore RoundFunction $(R_2, k^0) \oplus \beta =$

$$\begin{pmatrix}
0 & 0 & \Delta_1 & 0 \\
0 & 0 & \Delta_2 & 0 \\
0 & 0 & \Delta_3 & 0 \\
0 & 0 & \Delta_4 & 0
\end{pmatrix}$$

(2) Infection caused by compulsory dummy round does not affect ε .

$$C \oplus C^* = \begin{pmatrix} 0 & 0 & \Delta_1 & 0 \\ 0 & 0 & \Delta_2 & \varepsilon \oplus SNLF[\varepsilon] \\ 0 & 0 & \Delta_3 & 0 \\ 0 & 0 & \Delta_4 & 0 \end{pmatrix}$$

(2) Infection caused by compulsory dummy round does not affect ε .

$$C \oplus C^* = \begin{pmatrix} 0 & 0 & \Delta_1 & 0 \\ 0 & 0 & \Delta_2 & \varepsilon \oplus SNLF[\varepsilon] \\ 0 & 0 & \Delta_3 & 0 \\ 0 & 0 & \Delta_4 & 0 \end{pmatrix}$$

(3) Infection SNLF[ε] caused by 10th cipher round is ineffective.

(2) Infection caused by compulsory dummy round does not affect ε .

$$C \oplus C^* = \begin{pmatrix} 0 & 0 & \Delta_1 & 0 \\ 0 & 0 & \Delta_2 & \varepsilon \oplus SNLF[\varepsilon] \\ 0 & 0 & \Delta_3 & 0 \\ 0 & 0 & \Delta_4 & 0 \end{pmatrix}$$

- **(3)** Infection SNLF[ε] caused by 10th cipher round is ineffective.
- O Attacker uses the value of ε = S[I₁¹⁰ ⊕ f] ⊕ S[I¹⁰] to make hypotheses on I₁¹⁰ and key byte k₁₃¹¹.

(2) Infection caused by compulsory dummy round does not affect ε .

$$C \oplus C^* = \begin{pmatrix} 0 & 0 & \Delta_1 & 0 \\ 0 & 0 & \Delta_2 & \varepsilon \oplus SNLF[\varepsilon] \\ 0 & 0 & \Delta_3 & 0 \\ 0 & 0 & \Delta_4 & 0 \end{pmatrix}$$

- **(3)** Infection SNLF[ε] caused by 10th cipher round is ineffective.
- Attacker uses the value of $\varepsilon = S[I_1^{10} \oplus f] \oplus S[I^{10}]$ to make hypotheses on I_1^{10} and key byte k_{13}^{11} .
- Repeat this process with two more pairs of faulty and correct ciphertexts, using constant byte fault model.

() Infection caused by compulsory dummy round does not affect ε .

$$C \oplus C^* = \begin{pmatrix} 0 & 0 & \Delta_1 & 0 \\ 0 & 0 & \Delta_2 & \varepsilon \oplus SNLF[\varepsilon] \\ 0 & 0 & \Delta_3 & 0 \\ 0 & 0 & \Delta_4 & 0 \end{pmatrix}$$

- **③** Infection $SNLF[\varepsilon]$ caused by 10^{th} cipher round is ineffective.
- Attacker uses the value of $\varepsilon = S[I_1^{10} \oplus f] \oplus S[I^{10}]$ to make hypotheses on I_1^{10} and key byte k_{13}^{11} .
- Repeat this process with two more pairs of faulty and correct ciphertexts, using constant byte fault model.
- **1** The attack targets **last three rows** of the 10th round input.

() Infection caused by compulsory dummy round does not affect ε .

$$C \oplus C^* = \begin{pmatrix} 0 & 0 & \Delta_1 & 0 \\ 0 & 0 & \Delta_2 & \varepsilon \oplus SNLF[\varepsilon] \\ 0 & 0 & \Delta_3 & 0 \\ 0 & 0 & \Delta_4 & 0 \end{pmatrix}$$

- **③** Infection $SNLF[\varepsilon]$ caused by 10^{th} cipher round is ineffective.
- Attacker uses the value of $\varepsilon = S[I_1^{10} \oplus f] \oplus S[I^{10}]$ to make hypotheses on I_1^{10} and key byte k_{13}^{11} .
- Repeat this process with two more pairs of faulty and correct ciphertexts, using constant byte fault model.
- **1** The attack targets **last three rows** of the 10th round input.
- Recover remaining 4 bytes of top row using brute force search.

Flaws Exploited by FDTC 2013 attack

• The last cipher round is always the penultimate round: The attacker can verify target round using side channel.

Flaws Exploited by FDTC 2013 attack

- The last cipher round is always the penultimate round: The attacker can verify target round using side channel.
- A fault in last three rows of 10^{th} round \implies Infection caused by compulsory dummy round does not affect the erroneous byte.

Remark

What happens if the infection caused by compulsory dummy round affects the erroneous byte of 10^{th} round??

Further Loop Holes in LatinCrypt 2012 Countermeasure

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

CHES 2014 (South Korea, Busan)

3

(日) (周) (三) (三)

• Fault f in I_0^{10} , *i.e.*, first byte of the top row in the input of 10^{th} cipher round

- Fault f in I_0^{10} , *i.e.*, first byte of the top row in the input of 10^{th} cipher round
- Countermeasure infects the faulty computation twice

- Fault f in I_0^{10} , *i.e.*, first byte of the top row in the input of 10^{th} cipher round
- Countermeasure infects the faulty computation twice
 - After the execution of 10th cipher round

- Fault f in I_0^{10} , *i.e.*, first byte of the top row in the input of 10^{th} cipher round
- Countermeasure infects the faulty computation twice
 - After the execution of 10th cipher round
 - After the execution of compulsory dummy round

- 一司

- 一司

CHES 2014 (South Korea, Busan)

→ ∃ → September 24, 2014 19 / 48

- 一司

CHES 2014 (South Korea, Busan)

- ∢ ≣ → September 24, 2014 19 / 48

3

< 17 >

CHES 2014 (South Korea, Busan)

IIT KHARAGPUR

September 24, 2014 19 / 48

3

A B F A B F

< 🗇 🕨

() The differential between correct (R_1) and faulty computation (R_0) is:

• The differential between correct (R_1) and faulty computation (R_0) is:

() The differential between correct (R_1) and faulty computation (R_0) is:

() The differential between correct (R_1) and faulty computation (R_0) is:

After Infection Step, the differential is:

where $\varepsilon = S[I_0^{10} \oplus f] \oplus S[I_0^{10}]$

③ The differential of R_2 and β is:

3

< m

③ The differential of R_2 and β is:

• RoundFunction(R_2, k^0) $\oplus \beta =$

$$\begin{pmatrix} \alpha_1 & 0 & 0 & 0 \\ \alpha_2 & 0 & 0 & 0 \\ \alpha_3 & 0 & 0 & 0 \\ \alpha_4 & 0 & 0 & 0 \end{pmatrix}$$

CHES 2014 (South Korea, Busan)

() Infection caused by compulsory dummy round affects ε .

$$C \oplus C^* = \begin{pmatrix} \alpha_1 \oplus \varepsilon \oplus SNLF[\varepsilon] & 0 & 0 & 0 \\ \alpha_2 & 0 & 0 & 0 \\ \alpha_3 & 0 & 0 & 0 \\ \alpha_4 & 0 & 0 & 0 \end{pmatrix}$$

() Infection caused by compulsory dummy round affects ε .

$$C \oplus C^* = \begin{pmatrix} \alpha_1 \oplus \varepsilon \oplus SNLF[\varepsilon] & 0 & 0 & 0 \\ & \alpha_2 & & 0 & 0 & 0 \\ & \alpha_3 & & 0 & 0 & 0 \\ & & \alpha_4 & & 0 & 0 & 0 \end{pmatrix}$$

• Attack of FDTC 2013 will not work.

() Infection caused by compulsory dummy round affects ε .

$$C \oplus C^* = \begin{pmatrix} \alpha_1 \oplus \varepsilon \oplus SNLF[\varepsilon] & 0 & 0 & 0 \\ & \alpha_2 & & 0 & 0 & 0 \\ & \alpha_3 & & 0 & 0 & 0 \\ & & \alpha_4 & & 0 & 0 & 0 \end{pmatrix}$$

- Attack of FDTC 2013 will not work.
- α_1 has to be unmasked.

5 Infection caused by compulsory dummy round affects ε .

$$C \oplus C^* = \begin{pmatrix} \alpha_1 \oplus \varepsilon \oplus SNLF[\varepsilon] & 0 & 0 & 0 \\ & \alpha_2 & & 0 & 0 & 0 \\ & \alpha_3 & & 0 & 0 & 0 \\ & & \alpha_4 & & 0 & 0 & 0 \end{pmatrix}$$

- Attack of FDTC 2013 will not work.
- α_1 has to be unmasked.

We show that α_i are interrelated and infection caused by compulsory dummy round is ineffective.

A Major Flaw in the Infection Scheme

Since *RoundFunction*(β , k^0) = β we can write:

RoundFunction(R_2, k^0) $\oplus \beta = RoundFunction(R_2, k^0) \oplus RoundFunction(\beta, k^0)$

A Major Flaw in the Infection Scheme

Since *RoundFunction*(β , k^0) = β we can write:

 $\begin{aligned} \text{RoundFunction}(R_2, k^0) \oplus \beta &= \text{RoundFunction}(R_2, k^0) \oplus \text{RoundFunction}(\beta, k^0) \\ &= MC(SR(S(R_2))) \oplus k^0 \oplus MC(SR(S(\beta))) \oplus k^0 \end{aligned}$
Since *RoundFunction*(β , k^0) = β we can write:

 $\begin{aligned} \text{RoundFunction}(R_2, k^0) \oplus \beta &= \text{RoundFunction}(R_2, k^0) \oplus \text{RoundFunction}(\beta, k^0) \\ &= MC(SR(S(R_2))) \oplus k^0 \oplus MC(SR(S(\beta))) \oplus k^0 \\ &= MC(SR(S(R_2))) \oplus MC(SR(S(\beta))) \end{aligned}$

Since *RoundFunction*(β , k^0) = β we can write:

 $\begin{aligned} \text{RoundFunction}(R_2, k^0) \oplus \beta &= \text{RoundFunction}(R_2, k^0) \oplus \text{RoundFunction}(\beta, k^0) \\ &= MC(SR(S(R_2))) \oplus k^0 \oplus MC(SR(S(\beta))) \oplus k^0 \\ &= MC(SR(S(R_2))) \oplus MC(SR(S(\beta))) \\ &= MC(SR(S(R_2) \oplus S(\beta))) \end{aligned}$

Since *RoundFunction*(β , k^0) = β we can write:

 $\begin{aligned} \text{RoundFunction}(R_2, k^0) \oplus \beta &= \text{RoundFunction}(R_2, k^0) \oplus \text{RoundFunction}(\beta, k^0) \\ &= MC(SR(S(R_2))) \oplus k^0 \oplus MC(SR(S(\beta))) \oplus k^0 \\ &= MC(SR(S(R_2))) \oplus MC(SR(S(\beta))) \\ &= MC(SR(S(R_2) \oplus S(\beta))) \end{aligned}$

• When $R_2 = \beta$, RoundFunction $(R_2, k^0) \oplus \beta = 0$

Since *RoundFunction*(β , k^0) = β we can write:

 $\begin{aligned} \text{RoundFunction}(R_2, k^0) \oplus \beta &= \text{RoundFunction}(R_2, k^0) \oplus \text{RoundFunction}(\beta, k^0) \\ &= MC(SR(S(R_2))) \oplus k^0 \oplus MC(SR(S(\beta))) \oplus k^0 \\ &= MC(SR(S(R_2))) \oplus MC(SR(S(\beta))) \\ &= MC(SR(S(R_2) \oplus S(\beta))) \end{aligned}$

When R₂ = β, RoundFunction(R₂, k⁰) ⊕ β = 0
 When R₂ ≠ β, RoundFunction(R₂, k⁰) ⊕ β ≠ 0

③ The differential of R_2 and β is:

Image: Image:

3

③ The differential of R_2 and β is:

SoundFunction(R_2, k^0) $\oplus \beta = MC(SR(S(R_2) \oplus S(\beta)))$

③ The differential of R_2 and β is:

SoundFunction(R_2, k^0) $\oplus \beta = MC(SR(S(R_2) \oplus S(\beta)))$

③ The differential of R_2 and β is:

SoundFunction(R_2, k^0) $\oplus \beta = MC(SR(S(R_2) \oplus S(\beta)))$

Therefore we can write the difference between correct and faulty computation as:

$$C \oplus C^* = \begin{pmatrix} 2y \oplus \varepsilon \oplus SNLF[\varepsilon] & 0 & 0 & 0 \\ 1y & 0 & 0 & 0 \\ 1y & 0 & 0 & 0 \\ 3y & 0 & 0 & 0 \end{pmatrix}$$

- 一司

Therefore we can write the difference between correct and faulty computation as:

$$C \oplus C^* = \begin{pmatrix} 2y \oplus \varepsilon \oplus SNLF[\varepsilon] & 0 & 0 & 0 \\ 1y & 0 & 0 & 0 \\ 1y & 0 & 0 & 0 \\ 3y & 0 & 0 & 0 \end{pmatrix}$$

• y can be deduced from the above matrix.

Therefore we can write the difference between correct and faulty computation as:

$$C \oplus C^* = \begin{pmatrix} 2y \oplus \varepsilon \oplus SNLF[\varepsilon] & 0 & 0 & 0 \\ 1y & 0 & 0 & 0 \\ 1y & 0 & 0 & 0 \\ 3y & 0 & 0 & 0 \end{pmatrix}$$

- y can be deduced from the above matrix.
- **2** y can be unmasked.

Therefore we can write the difference between correct and faulty computation as:

$$C \oplus C^* = \begin{pmatrix} 2y \oplus \varepsilon \oplus SNLF[\varepsilon] & 0 & 0 & 0 \\ 1y & 0 & 0 & 0 \\ 1y & 0 & 0 & 0 \\ 3y & 0 & 0 & 0 \end{pmatrix}$$

- y can be deduced from the above matrix.
- **2** y can be unmasked.
- And the attack of FDTC 2013 can be mounted.

Therefore we can write the difference between correct and faulty computation as:

$$C \oplus C^* = \begin{pmatrix} 2y \oplus \varepsilon \oplus SNLF[\varepsilon] & 0 & 0 & 0 \\ 1y & 0 & 0 & 0 \\ 1y & 0 & 0 & 0 \\ 3y & 0 & 0 & 0 \end{pmatrix}$$

- **o y** can be deduced from the above matrix.
- 2y can be unmasked.
- And the attack of FDTC 2013 can be mounted.
- Now, this attack can target any 12 bytes of 10th round input.

FDTC 2013 Attack Extended to the Top Row

CHES 2014 (South Korea, Busan)

글 > - + 글 > September 24, 2014 26 / 48

< m

3

Piret and Quisquater's Attack

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

CHES 2014 (South Korea, Busan)

- 一司

3

The attack assumes constant byte fault model which requires precise control over fault position and value.

- The attack assumes **constant byte fault model** which requires precise control over fault position and value.
- The attack can retrieve only last 3 rows of k¹¹ using 12*3 = 36 faults.

- The attack assumes constant byte fault model which requires precise control over fault position and value.
- The attack can retrieve only last 3 rows of k¹¹ using 12*3 = 36 faults.
- Solution The top row of k^{11} has to be recoverd using brute force search.

 The attack targets the penultimate round of AES, e.g, in case of AES128, input of 9th round is the target.

- The attack targets the penultimate round of AES, e.g, in case of AES128, input of 9th round is the target.
- Fault f in I_0^9 , *i.e.*, first byte of the top row in the input of 9^{th} cipher round

- The attack targets the penultimate round of AES, e.g, in case of AES128, input of 9th round is the target.
- Fault f in I_0^9 , *i.e.*, first byte of the top row in the input of 9^{th} cipher round
- Countermeasure infects faulty computation thrice

- The attack targets the penultimate round of AES, e.g, in case of AES128, input of 9th round is the target.
- Fault f in I_0^9 , *i.e.*, first byte of the top row in the input of 9th cipher round
- Countermeasure infects faulty computation thrice
 - After the execution of 9th cipher round

- The attack targets the penultimate round of AES, e.g, in case of AES128, input of 9th round is the target.
- Fault f in I_0^9 , *i.e.*, first byte of the top row in the input of 9^{th} cipher round
- Countermeasure infects faulty computation thrice
 - After the execution of 9th cipher round
 - After the execution of 10th cipher round

- The attack targets the penultimate round of AES, e.g, in case of AES128, input of 9th round is the target.
- Fault f in I_0^9 , *i.e.*, first byte of the top row in the input of 9^{th} cipher round
- Countermeasure infects faulty computation thrice
 - After the execution of 9th cipher round
 - After the execution of 10th cipher round
 - After the execution of compulsory dummy round

Differential after 9th round

Without Countermeasure

$$R_0 \oplus R_1 = \begin{pmatrix} 2f' & 0 & 0 & 0 \\ f' & 0 & 0 & 0 \\ f' & 0 & 0 & 0 \\ 3f' & 0 & 0 & 0 \end{pmatrix}$$

3

E 5 4 E

Differential after 9th round

Without Countermeasure

$$R_0 \oplus R_1 = \begin{pmatrix} 2f' & 0 & 0 & 0 \\ f' & 0 & 0 & 0 \\ f' & 0 & 0 & 0 \\ 3f' & 0 & 0 & 0 \end{pmatrix}$$

With Countermeasure

$$R_0 \oplus R_1 = \begin{pmatrix} 2f' \oplus SNLF[2f'] & 0 & 0 & 0 \\ f' \oplus SNLF[f'] & 0 & 0 & 0 \\ f' \oplus SNLF[f'] & 0 & 0 & 0 \\ 3f' \oplus SNLF[3f'] & 0 & 0 & 0 \end{pmatrix}$$

Differential after 10th round

Without Countermeasure

$$R_0 \oplus R_1 = \begin{pmatrix} S[l_0^{10}] \oplus S[l_0^{10} \oplus P_0] & 0 & 0 & 0\\ 0 & 0 & 0 & S[l_1^{10}] \oplus S[l_1^{10} \oplus P_1] \\ 0 & 0 & S[l_2^{10}] \oplus S[l_2^{10} \oplus P_2] & 0 \\ 0 & S[l_3^{10}] \oplus S[l_3^{10} \oplus P_3] & 0 & 0 \end{pmatrix}$$

- 一司

Differential after 10th round

Without Countermeasure

$$R_0 \oplus R_1 = \begin{pmatrix} S[l_0^{10}] \oplus S[l_0^{10} \oplus P_0] & 0 & 0 & 0 \\ 0 & 0 & 0 & S[l_1^{10}] \oplus S[l_1^{10} \oplus P_1] \\ 0 & 0 & S[l_2^{10}] \oplus S[l_2^{10} \oplus P_2] & 0 \\ 0 & S[l_3^{10}] \oplus S[l_3^{10} \oplus P_3] & 0 & 0 \end{pmatrix}$$

With Countermeasure

$$R_0 \oplus R_1 = \begin{pmatrix} z_0 \oplus SNLF[z_0] & 0 & 0 & 0\\ 0 & 0 & 0 & z_1 \oplus SNLF[z_1] \\ 0 & 0 & z_2 \oplus SNLF[z_2] & 0\\ 0 & z_3 \oplus SNLF[z_3] & 0 & 0 \end{pmatrix}$$

where $z_i = S[I_i^{10}] \oplus S[I_i^{10} \oplus P_i \oplus SNLF[P_i]], i \in \{0, \ldots, 3\}.$

Equations for the keys

Without Countermeasure

$$\begin{aligned} 2 \cdot f' &= S^{-1}[T_0 \oplus k_0^{11}] \oplus S^{-1}[T_0^* \oplus k_0^{11}] \\ 1 \cdot f' &= S^{-1}[T_{13} \oplus k_{13}^{11}] \oplus S^{-1}[T_{13}^* \oplus k_{13}^{11}] \\ 1 \cdot f' &= S^{-1}[T_{10} \oplus k_{10}^{11}] \oplus S^{-1}[T_{10}^* \oplus k_{10}^{11}] \\ 3 \cdot f' &= S^{-1}[T_7 \oplus k_7^{11}] \oplus S^{-1}[T_7^* \oplus k_7^{11}] \end{aligned}$$

where T and T^* is correct and faulty ciphertext resp.

- 一司

3

Equations for the keys

Without Countermeasure

$$\begin{aligned} 2 \cdot f' &= S^{-1}[T_0 \oplus k_0^{11}] \oplus S^{-1}[T_0^* \oplus k_0^{11}] \\ 1 \cdot f' &= S^{-1}[T_{13} \oplus k_{13}^{11}] \oplus S^{-1}[T_{13}^* \oplus k_{13}^{11}] \\ 1 \cdot f' &= S^{-1}[T_{10} \oplus k_{10}^{11}] \oplus S^{-1}[T_{10}^* \oplus k_{10}^{11}] \\ 3 \cdot f' &= S^{-1}[T_7 \oplus k_7^{11}] \oplus S^{-1}[T_7^* \oplus k_7^{11}] \end{aligned}$$

where T and T^* is correct and faulty ciphertext resp.

With Countermeasure

 $2 \cdot f' \oplus SNLF[2 \cdot f'] = S^{-1}[T_0 \oplus k_0^{11}] \oplus S^{-1}[T_0^* \oplus k_0^{11}]$ $1 \cdot f' \oplus SNLF[1 \cdot f'] = S^{-1}[T_{13} \oplus k_{13}^{11}] \oplus S^{-1}[T_{13}^* \oplus k_{13}^{11}]$ $1 \cdot f' \oplus SNLF[1 \cdot f'] = S^{-1}[T_{10} \oplus k_{10}^{11}] \oplus S^{-1}[T_{10}^* \oplus k_{10}^{11}]$ $3 \cdot f' \oplus SNLF[3 \cdot f'] = S^{-1}[T_7 \oplus k_7^{11}] \oplus S^{-1}[T_7^* \oplus k_7^{11}]$

where T and T^* is correct and faulty ciphertext resp.

Infection of Compulsory dummy round

Oue to the presence of compulsory dummy round, the difference between the final faulty and correct ciphertext:

$$T \oplus T^* = \begin{pmatrix} m_0 \oplus cdr_0 & cdr_4 & cdr_8 & cdr_{12} \\ cdr_1 & cdr_5 & cdr_9 & m_1 \oplus cdr_{13} \\ cdr_2 & cdr_6 & m_2 \oplus cdr_{10} & cdr_{14} \\ cdr_3 & m_3 \oplus cdr_7 & cdr_{11} & cdr_{15} \end{pmatrix}$$
$$m_j = z_j \oplus SNLF[z_j], j \in \{0, \dots, 3\}.$$

- 3

Infection of Compulsory dummy round

Oue to the presence of compulsory dummy round, the difference between the final faulty and correct ciphertext:

 $T \oplus T^* = \begin{pmatrix} m_0 \oplus cdr_0 & cdr_4 & cdr_8 & cdr_{12} \\ cdr_1 & cdr_5 & cdr_9 & m_1 \oplus cdr_{13} \\ cdr_2 & cdr_6 & m_2 \oplus cdr_{10} & cdr_{14} \\ cdr_3 & m_3 \oplus cdr_7 & cdr_{11} & cdr_{15} \end{pmatrix}$

$$m_j = z_j \oplus SNLF[z_j], j \in \{0,\ldots,3\}.$$

2 Using the relation: $RoundFunction(R_2, k^0) \oplus \beta = MC(SR(S(R_2) \oplus S(\beta)))$ we have:

 $T \oplus T^* = \begin{pmatrix} m_0 \oplus g_1(F_1, F_2) & 1F_3 & h_1(F_4, F_5, F_6) & 3F_7 \\ g_2(F_1, F_2) & 1F_3 & h_2(F_4, F_5, F_6) & m_1 \oplus 2F_7 \\ g_3(F_1, F_2) & 3F_3 & m_2 \oplus h_3(F_4, F_5, F_6) & 1F_7 \\ g_4(F_1, F_2) & m_3 \oplus 2F_3 & h_4(F_4, F_5, F_6) & 1F_7 \end{pmatrix}$

 $F_i, i \in \{1, ..., 7\}$ is infection caused by compulsory dummy round and g_j and $h_j, j \in \{1, ..., 4\}$ are linear functions.

P&Q's Attack on LatinCrypt 2012 Countermeasure: Infection Removal

After removing infection caused by compulsory dummy round we obtain:

$$T \oplus T^* = \begin{pmatrix} m_0 & 0 & 0 & 0 \\ 0 & 0 & 0 & m_1 \\ 0 & 0 & m_2 & 0 \\ 0 & m_3 & 0 & 0 \end{pmatrix}$$

where $m_j = z_j \oplus SNLF[z_j], j \in \{0, \ldots, 3\}.$

P&Q's Attack on LatinCrypt 2012 Countermeasure: Infection Removal

After removing infection caused by compulsory dummy round we obtain:

$$T \oplus T^* = \begin{pmatrix} m_0 & 0 & 0 & 0 \\ 0 & 0 & 0 & m_1 \\ 0 & 0 & m_2 & 0 \\ 0 & m_3 & 0 & 0 \end{pmatrix}$$

where $m_j = z_j \oplus SNLF[z_j], j \in \{0, \ldots, 3\}.$

• We can deduce z_j (two possibilities) from m_j which gives 2^4 possibilities for T^* .

P&Q's Attack on LatinCrypt 2012 Countermeasure: Infection Removal

After removing infection caused by compulsory dummy round we obtain:

$$T \oplus T^* = \begin{pmatrix} m_0 & 0 & 0 & 0 \\ 0 & 0 & 0 & m_1 \\ 0 & 0 & m_2 & 0 \\ 0 & m_3 & 0 & 0 \end{pmatrix}$$

where $m_j = z_j \oplus SNLF[z_j], j \in \{0, \ldots, 3\}.$

We can deduce z_j(two possibilities) from m_j which gives 2⁴ possibilities for T^{*}.

3 Now, we can make hypotheses on 4 bytes of last round key k^{11} .

$$2 \cdot f' \oplus SNLF[2 \cdot f'] = S^{-1}[T_0 \oplus k_0^{11}] \oplus S^{-1}[T_0^* \oplus k_0^{11}]$$

$$1 \cdot f' \oplus SNLF[1 \cdot f'] = S^{-1}[T_{13} \oplus k_{13}^{11}] \oplus S^{-1}[T_{13}^* \oplus k_{13}^{11}]$$

$$1 \cdot f' \oplus SNLF[1 \cdot f'] = S^{-1}[T_{10} \oplus k_{10}^{11}] \oplus S^{-1}[T_{10}^* \oplus k_{10}^{11}]$$

$$3 \cdot f' \oplus SNLF[3 \cdot f'] = S^{-1}[T_7 \oplus k_7^{11}] \oplus S^{-1}[T_7^* \oplus k_7^{11}]$$
Complexity Analysis

2⁴ values of T^* gives $2^4 * 1036$ candidate values for 4 bytes of k^{11} .

Complexity Analysis

- **Q** 2^4 values of T^* gives $2^4 * 1036$ candidate values for 4 bytes of k^{11} .
- Repeating the attack with another pair of faulty and correct ciphertext gives atmost 2 candidate values.

Complexity Analysis

- **Q** 2^4 values of T^* gives $2^4 * 1036$ candidate values for 4 bytes of k^{11} .
- Repeating the attack with another pair of faulty and correct ciphertext gives atmost 2 candidate values.
- Solution Total 8 faulty ciphertexts required to retrieve all 16 bytes of k^{11} .

- 一司

3

Number of random dummy rounds : d

- 一司

- Number of random dummy rounds : d
- 2 Total number of rounds : 22 + d + 1

- Number of random dummy rounds : d
- 2 Total number of rounds : 22 + d + 1
- **③** Target round of fault injection : $(22 + d 2)^{th}$ RoundFunction.

- Number of random dummy rounds : d
- 2 Total number of rounds : 22 + d + 1
- **③** Target round of fault injection : $(22 + d 2)^{th}$ RoundFunction.
- $(22+d)^{th}$ RoundFunction: 10^{th} cipher round.

- Number of random dummy rounds : d
- 2 Total number of rounds : 22 + d + 1
- **3** Target round of fault injection : $(22 + d 2)^{th}$ RoundFunction.
- $(22+d)^{th}$ RoundFunction: 10^{th} cipher round.
- S ∴ The probability of $(22 + d 2)^{th}$ RoundFunction being a 9th cipher round: $\frac{(19+d)!/((19)!\cdot(d)!)}{(21+d)!/((21)!\cdot(d)!)}$

- Number of random dummy rounds : d
- 2 Total number of rounds : 22 + d + 1
- **③** Target round of fault injection : $(22 + d 2)^{th}$ RoundFunction.
- $(22+d)^{th}$ RoundFunction: 10^{th} cipher round.
- Solution The probability of (22 + d − 2)th RoundFunction being a 9th cipher round: (19+d)!/((19)! · (d)!)/((21+d)!/((21)! · (d)!))
- If d = 20 then the probability that 40^{th} RoundFunction is a 9^{th} cipher round is nearly 0.26.

Simulation Results

• The last cipher round is always the penultimate round: The attacker can verify target round using side channel.

- The last cipher round is always the penultimate round: The attacker can verify target round using side channel.
- A fault in last three rows of 10^{th} round \implies Infection caused by compulsory dummy round does not affect the erroneous byte.

- The last cipher round is always the penultimate round: The attacker can verify target round using side channel.
- ② A fault in last three rows of 10th round ⇒ Infection caused by compulsory dummy round does not affect the erroneous byte.
- Ountermeasure uses same value to infect erroneous as well as non-erroneous byte.

- The last cipher round is always the penultimate round: The attacker can verify target round using side channel.
- A fault in last three rows of 10^{th} round \implies Infection caused by compulsory dummy round does not affect the erroneous byte.
- Ountermeasure uses same value to infect erroneous as well as non-erroneous byte.
- The effect of infection varies for different rounds.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

3

< □ > < ---->

3

< A

3

< □ > < ---->

3

< A

3

< A

CHES 2014 (South Korea, Busan)

September 24, 2014 39 / 48

э

CHES 2014 (South Korea, Busan)

September 24, 2014 39 / 48

3

CHES 2014 (South Korea, Busan)

3

- Fault injection in any of the cipher, redundant or dummy round ⇒ Every byte in the resulting ciphertext is infected with a different value.
- ② The resulting infected faulty ciphertext is completely random.
- Image of the second second second and the second second
- The improved countermeasure protects both SPN ciphers and Feistel ciphers.

Summary & Conclusion

The infection mechanism of LatinCrypt 2012 countermeasure is shown to be ineffective.

- 一司

3

Summary & Conclusion

- The infection mechanism of LatinCrypt 2012 countermeasure is shown to be ineffective.
- An improved countermeasure is developed, which outputs a completely random value in case of fault injection so that fault attack is impossible.

Thank You !

CHES 2014 (South Korea, Busan)

IIT KHARAGPUR

September 24, 2014 42 / 48

3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

References

- D.Boneh, R.A.DeMillo, and R.J.Lipton. On the Importance of Checking Cryptographic Protocols for Faults (ExtendedAbstract). In W. Fumy, editor, Advances in Cryptology - EUROCRYPT 97, volume 1233 of Lecture Notes in Computer Science, pages 37-51. Springer, 1997.
- E.Biham and A.Shamir. Differential cryptanalysis of DES-like cryptosystems. In B.S. Kaliski (ed.) Advances in Cryptology CRYPTO 97, LNCS, vol. 1294, pp. 513-525. Springer (1997).
- C.Giraud. DFA on AES. In H. Dobbertin, V. Rijmen, A. Sowa (eds.) AES Conference, Lecture Notes in Computer Science, vol. 3373, pp. 27-41. Springer(2004).
- J.Blömer and J-P.Seifert. Fault based cryptanalysis of the Advanced Encryption Standard. In R.N. Wright (ed.) Financial Cryptography, Lecture Notes in Computer Science, vol. 2742, pp. 162-181. Springer (2003).

- 3

(日) (周) (三) (三)

- G.Piret and J.J.Quisquater. A Differential Fault Attack Technique against SPN Structures, with Application to the AES and KHAZAD. In Cryptographic Hardware and Embedded Systems - CHES 2003, volume 2779 Lecture Notes in Computer Science, pp 77-88. Springer, 2003.
- D.Mukhopadhyay. An Improved Fault Based Attack of the Advanced Encryption Standard. In B. Preneel editor, AFRICACRYPT 2009, volume 5580 of Lecture Notes in Computer Science, pages 421-434.Springer,2009.
- Thomas Fuhr, Éliane Jaulmes, Victor Lomné, Adrian Thillard. Fault Attacks on AES with Faulty Ciphertexts Only, fdtc, pp.108-118, 2013. In Fault Diagnosis and Tolerance in Cryptography, 2013.
- D.Mukhopadhyay, M.Tunstall, S.Ali. Differential Fault Analysis of the Advanced Encryption Standard Using a Single Fault. In Information Security Theory and Practice. Security and Privacy of Mobile Devices in Wireless Communication 2011, Volume 6633 of Lecture Notes in Computer Science, pages 224-233. Springer, 2011.

(人間) トイヨト イヨト

- R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and L. Wingers. The SIMON and SPECK Families of Lightweight Block Ciphers. Cryptology ePrint Archive, Report 2013/404, 2013. Available at http://eprint.iacr.org/.
- L. Genelle, C. Giraud, and E. Prouff. Securing AES Implementation Against Fault Attacks. In L. Breveglieri, I. Koren, D. Naccache, E. Oswald, and J.-P. Seifert, editors, Fault Diagnosis and Tolerance in Cryptography FDTC 2009. IEEE Computer Society, 2009.
- M. Medwed and Jorn-Marc-Schmidt. A Continuous Fault Countermeasure for AES Providing a Constant Error Detection Rate. In L. Breveglieri, M. Joye, I. Koren, D. Naccache, and I. Verbauwhede, editors, FDTC. IEEE Computer Society, 2010.
- M. Joye, P. Manet, and J.-B. Rigaud. Strengthening Hardware AES Implementations against Fault Attacks. IET Information Security, 1:106-110, 2007.

イロト 不得 トイヨト イヨト 二日

- J. Fournier, J.-B. Rigaud, S. Bouquet, B. Robisson, A. Tria, J.-M. Dutertre, and M. Agoyan. Design and Characterisation of an AES Chip Embedding Countermeasures. International Journal of Intelligent Engineering Informatics 2011, 1:328347, 2011.
- T. Malkin, F.-X. Standaert, and M. Yung. A Comparative Cost/Security Analysis of Fault Attack Countermeasures. Fault Diagnosis and Tolerance in Cryptography(FDTC), 2006.
- Lomne, V., Roche, T., Thillard, A. On The Need of Randomness in Fault Attack Countermeasures-Application to AES. Fault Diagnosis and Tolerance in Cryptography(FDTC), 2012.
- A.Battistello and C.Giraud. Fault Analysis of Infective AES Computations, fdtc, pp: 101-107, 2013. In Fault Diagnosis and Tolerance in Cryptography, 2013. Also available at 'http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=06623560'.

イロト イポト イヨト イヨト 二日

- Benedikt Gierlichs, Jörn-Marc Schmidt, Michael Tunstall: Infective Computation and Dummy Rounds: Fault Protection for Block Ciphers without Check-before-Output. In A. Hevia and G. Neven, editors, LATINCRYPT 2012, volume 7533 of LNCS, pages 305-321. Springer, 2012.
- Daemen, J., Rijmen, V.: AES proposal: Rijndael (1999).
- FIPS PUB 197: Advanced Encryption Standard (AES). Federal Information Processing Standards Publication 197, National Institute of Standards and Technology (NIST), Gaithersburg (2001).
- R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and L. Wingers. The SIMON and SPECK Families of Lightweight Block Ciphers. Cryptology ePrint Archive, Report 2013/404, 2013. Available at http://eprint.iacr.org/

- 3

- 4 同 6 4 日 6 4 日 6
- H. A. Alkhzaimi and M. M. Lauridsen. Cryptanalysis of the SIMON Family of Block Ciphers. Cryptology ePrint Archive, Report 2013/543, 2013. Available at http://eprint.iacr.org/
- F. Abed, E. List, S. Lucks, and J. Wenzel. Differential Cryptanalysis of Reduced-Round Simon. Cryptology ePrint Archive, Report 2013/526, 2013. Available at http://eprint.iacr.org/.
- Javad Alizadeh, Nasour Bagheri, Praveen Gauravaram, Abhishek Kumar and Somitra Kumar Sanadhya. Linear Cryptanalysis of Round Reduced SIMON. IACR Cryptology eprint Archive, Report 2013/663, 2013. Available at http://eprint.iacr.org/2013/663

- 3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >