A Statistical Model for Higher Order DPA on Masked Devices

<u>A. Adam Ding¹</u>, Liwei Zhang¹, Yunsi Fei², Pei Luo² ¹: Department of Mathematics, Northeastern University ²:Department of Electrical and Computer Engineering Northeastern University

Acknowledgment: National Science Foundation CNS-1314655, CNS-1337854

Northeastern University

Outline

- Algorithmic confusion analysis for power analysis attack
 - Confusion coefficient for DPA, CPA κ (k_i , k_j)
 - Model for DPA/CPA, success rate
- Success rate for higher order centered product combination attack (higher order CPA) on masking countermeasures
- Equivalence between the maximum-likelihood (ML) attack and the centered product combination attack

Preliminaries ([CHES 2012]): Algorithmic Confusion Analysis for mono-bit DPA

- Confusion coefficient: an algorithmic metric to reveal key distinguishability
- Confusion coefficient between two keys (k_i, k_j) : $\kappa = \kappa(k_i, k_j) = Pr[(V/k_i) \neq (V/k_j)] = \frac{N_{(V/k_i) \neq (V/k_j)}}{N_i}$
- Three-way confusion coefficient: $\tilde{\kappa} = \tilde{\kappa}(k_h, k_i, k_j) = Pr[(V/k_i) = (V/k_j), (V/k_h) \neq (V/k_i)]$
- Confusion Lemma :

$$\widetilde{\kappa}(k_h,k_i,k_j) = \frac{1}{2} [\kappa(k_h,k_i) + \kappa(k_h,k_j) - \kappa(k_i,k_j)]$$

Statistical Model for DPA ([CHES 2012])

- Power consumption leakage model with additive Gaussian noises: $\mathbf{l}_m = \varepsilon \mathbf{v}_m + c + \sigma r_m$ $m = 1, \dots, n$
 - I_m (leakage), $v_m = \psi(x_m, k)$ is the select function, and r_m is the random noise, following a Gaussian distribution N(0, 1)
- Signal-to-noise ratio of the side channel: SNR $\delta = \varepsilon / \sigma$
- For DPA model, the distance of means (DoM) attack

$$SR = \Phi_{N_k-1}(\sqrt{n}\Sigma^{-1/2}\mu)$$

where μ and \sum are expressed by SNR and confusion coefficients.

Extension to CPA

$$l_m = \varepsilon v_m + c + \sigma r_m \qquad m = 1, \cdots, n$$

- *v_m* is <u>Hamming distance/weight</u> of multiple bits.
- Two-way confusion coefficient: $\kappa = \kappa (k_i, k_j) = E[(V/k_i - V/k_j)^2]$
- Three-way confusion coefficient:

$$\tilde{\kappa} = \tilde{\kappa}(k_h, k_i, k_j) = E[(V \mid k_h - V \mid k_i)(V \mid k_h - V \mid k_j)]$$

 $\tilde{\kappa}^* = \tilde{\kappa}^*(k_h, k_i, k_j) = E[(V | k_h - V | k_i)(V | k_h - V | k_j)(V | k_h - E(V | k_h))^2]$

Confusion lemma still holds for:

$$\widetilde{\kappa}(k_h, k_i, k_j) = \frac{1}{2} [\kappa(k_h, k_i) + \kappa(k_h, k_j) - \kappa(k_i, k_j)]$$

Success Rates for 1st Order CPA

• Under the CPA model:

$$\boldsymbol{\mu} = \frac{1}{2} \left(\frac{\varepsilon}{\sigma}\right)^2 \boldsymbol{\kappa} \qquad \boldsymbol{\Sigma} = \left(\frac{\varepsilon}{\sigma}\right)^2 \boldsymbol{K} + \frac{1}{4} \left(\frac{\varepsilon}{\sigma}\right)^4 \left(\boldsymbol{K}^* - \boldsymbol{\kappa} \boldsymbol{\kappa}^T\right)$$

- κ is called the "confusion vector", consisting of N_k -1 two-way confusion coefficients $\kappa(k_c, k_g)$
- **K** and **K*** are "confusion matrices", $(N_k-1)x(N_k-1)$, consisting of threeway confusion coefficients $\tilde{\kappa}(k_c, k_{g_i}, k_{g_i})$ and $\tilde{\kappa}^*(k_c, k_{g_i}, k_{g_i})$
- The success rate of the CPA (unmasked):

$$SR = \Phi_{N_k-1} \{ \sqrt{n} \frac{\varepsilon}{2\sigma} [\mathbf{K} + (\frac{\varepsilon}{2\sigma})^2 (\mathbf{K}^* - \kappa \kappa^T)]^{-1/2} \kappa \}$$

http://eprint.iacr.org/ Report 2014/152

Experimental Results for DES

Confusion matrix K of DPA on the first bit of the first SBox

Results for DES (II)

Confusion matrix K of CPA on the first DES SBox

Confusion matrix **K** of CPA

Diagonal of \mathbf{K} – confusion vector $\mathbf{\kappa}$ of CPA

DPA vs. CPA

- DPA is a special case of CPA
- Under DPA model, $\mathbf{K} = \mathbf{K}^*$
- When the SNR is small, all the success rate (for ML attack, DPA, and CPA) become:

$$SR = \Phi_{N_k-1} \{ \sqrt{n} \frac{\varepsilon}{2\sigma} \mathbf{K}^{-1/2} \mathbf{\kappa} \}$$

2nd Order CPA on Masked Devices

- Using two leakage times points: one leaks mask M and the other leaks $Z(x, k) \oplus M$.
 - Time point t_0 : $L(t_0) = L_0 = \varepsilon_0 V_0 + c_0 + \sigma_0 r_0$
 - Time point t_1 : $L(t_1) = L_1 = \varepsilon_1 V_1 + c_1 + \sigma_1 r_1$ with $V_1 = HW(M)$ and $V_0 = HW(Z \oplus M)$,
- <u>2nd Order CPA</u>: maximum correlation between the centered product of L(t₀)L(t₁) and HW(Z).

Success Rates (SR) for 2nd Order CPA

- Under the Hamming Weight/Distance model: $\boldsymbol{\mu} = \frac{1}{4} \delta_0^2 \delta_1^2 \boldsymbol{\kappa}$ $\boldsymbol{\Sigma} = \delta_0^2 \delta_1^2 (1 + \frac{b}{4} \delta_0^2) (1 + \frac{b}{4} \delta_1^2) \mathbf{K} + \frac{1}{16} \delta_0^4 \delta_1^4 (2\mathbf{K}^* - \frac{b}{2} \mathbf{K} - \boldsymbol{\kappa} \boldsymbol{\kappa}^T)$
 - κ, K and K* are exactly the same as in the unmasked case.
- The formula does not assume Gaussian noise.
- Including second term, SR formula fits simulated SR for moderate SNR≈1

Success Rates for 2nd Order Attack

Black is the theoretical, Red is the simulated SR for CPA, blue for ML

Use SR formula for 2nd Order CPA

Quantify masking effect explicitly (small SNR):
^o2nd Order CPA (leading term, for small SNR):

$$SR = \Phi_{N_k-1}\{\sqrt{n}\,\frac{\delta_0\,\delta_1}{4}\,\mathbf{K}^{-1/2}\,\mathbf{\kappa}\}$$

•Versus unmasked CPA: $SR = \Phi_{N_k-1} \{ \sqrt{n} \frac{\delta}{2} \mathbf{K}^{-1/2} \mathbf{\kappa} \}$

- Masking increasing required sample size by (2/δ)²
- Faster evaluation: find SNR δ then plug-in.
- In next slide, find SNR from 10,000 traces, compare SR to empirical SR from 1.4M traces

Success Rates for 2nd Order Attack

Empirical versus theoretical success rates on measurement data of a masked AES FPGA implementation Empirical versus theoretical success rates on simulated data with Lapalace noise instead of Gaussian noise.

Higher Order CPA Success Rate

- J masks, process $Z \bigoplus_{i=1}^{J} M_{j}$
- J+1 order attack, at time points t_j
 - j = 0, 1, ..., J leaks $V_0 = V_0(Z \bigoplus_{j=1}^J M_j)$ and

 $V_1 = V_1(M_1), \dots, V_J = V_J(M_J)$

Success Rate:

 $SR = \Phi_{N_k - 1}(\sqrt{n}\Sigma^{-1/2}\mu) = \Phi_{N_k - 1}(\frac{\sqrt{n}\prod_{j=0}^J \delta_j}{2^{J+1}}\vec{K}^{-1/2}\vec{\kappa}).$

Success Rates for 3rd Order Attack

Empirical versus theoretical success rates on simulated data, SNR=0.2

2nd Order Maximum Likelihood ML-Attack

The ML-attack statistic T:

$$T_{k_{g}} = \frac{1}{n} \sum_{i=1}^{n} \log f(\vec{l}_{i} | k_{g})$$

= $\frac{1}{n} \sum_{i=1}^{n} \log[\frac{1}{|\mathcal{M}|} \sum_{m \in \mathcal{M}} f_{0}(l_{i,0} | k_{g}, m) f_{1}(l_{i,1} | m)]$

- The likelihood iterates over all possible mask values in ${\mathcal M}$
- The iteration is of order $|\mathcal{M}|$, and would increase exponentially with the order of masks.
- For Gaussian noises, this is a mixture Gaussian density.

2nd Order Attack Model

$$L_{0} = \varepsilon_{0}V_{0} + c_{0} + \sigma_{0}r_{0} \qquad L_{1} = \varepsilon_{1}V_{1} + c_{1} + \sigma_{1}r_{1}$$
$$l_{0}^{*} = (L_{0} - c_{0}) / \sigma_{0} = \delta_{0}V_{0} + r_{0} \qquad l_{1}^{*} = \delta_{1}V_{1} + r_{1}$$

• When SNRs $\delta_0 \rightarrow 0$, $\delta_1 \rightarrow 0$, the ML-attack statistic T_{k_a} has key-independent limit

$$\frac{1}{n}\sum_{i=1}^{n}\log\left[\frac{1}{|\mathcal{M}|}\sum_{m\in\mathcal{M}}f_{r}(l_{i,0}^{*}-\delta_{0}V_{0}(k_{g},m))f_{r}(l_{i,1}^{*}-\delta_{1}V_{1}(m))\right]$$

$$\rightarrow \frac{1}{n} \sum_{i=1}^{n} \log[f_r(r_{i,0}) f_r(r_{i,1})]$$

2nd Order Attack Approximation

- When SNRs $\delta_0 \to 0$, $\delta_1 \to 0$, $\delta_1 \to 0$, do a Taylor expansion within the $E_m = \frac{1}{|\mathcal{M}|} \sum_{m \in \mathcal{M}} meration$, operation, and on the log[.]
- The first term after E_m operation is key independent. The key selection happens on the second term, which is equivalent to the centered product combination attack (20 CPA) statistic

$$\frac{1}{n} \sum_{i=1}^{n} \left[(l_{i,0} - El_{i,0})(l_{i,1} - El_{i,1})g(Z_i^g) \right] \quad \text{with}$$

 $g(Z_i^g) = E_m[V_0(k_g, m)V_1(m)]$, for Hamming Weights model, $g(Z_i^g) \propto H(Z_i^g)$

For Higher Order Masking

- The centered product combination attack is the strongest possible attack for noisy (small SNRs) situation, Gaussian noise.
- Generally, the key selection happens on the second term of Taylor expansion: can find efficient attack asymptotic equivalent to ML-attack. (J+1)th for J order masking.
- Valid Taylor Approximation when the noise density has continuous third derivative.

Acknowledgments

- Project webpage: <u>http://tescase.coe.neu.edu</u>
- Funding
 - NSF SaTC TWC: Medium: A unified statistics-based framework for side-channel attack analysis and security evaluation of cryptosystems
 - NSF MRI: Development of a Testbed for Side-Channel Analysis and Security Evaluation -TeSCASE
- Collaborators
 - NU: Yunsi Fei, Dave Kaeli, Miriam Leeser
 - WPI: Thomas Eisenbarth
- Students
 - PhD students: Liwei Zhang, Pei Luo, Jian Lao, Zhen Hang Jiang
 - Undergraduate students: Neel Shah, Tushar Swamy, Ang Shør