Fast Evaluation of Polynomials over Binary Finite Fields and Application to Side-channel Countermeasures

Jean-Sébastien Coron¹, Arnab Roy^{1,2}, Srinivas Vivek¹

¹University of Luxembourg

²DTU, Denmark

September 25, 2014

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Outline

- Background & previous work
- Our results:
 - new polynomial evaluation algorithm

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- improved generic lower bound
- Future work

• Background & previous work

Motivation: Masking

• Masking: effective countermeasure for *block ciphers* against *DPA*

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

attacks.

Motivation: Masking

• **Masking**: effective countermeasure for *block ciphers* against *DPA attacks.*

- ロ ト - 4 回 ト - 4 □

- Approach: to *split* (secret share) every *sensitive* variable *x*.
 - $x = x_0 \perp x_1 \perp \ldots \perp x_d.$
 - $\perp: \oplus, \text{ or } + \text{ over } \mathbb{F}_{2^n}.$
 - Masking Order: d.
 - Order of security: $t \leq d$.

Motivation: Masking

- **Masking**: effective countermeasure for *block ciphers* against *DPA attacks*.
- Approach: to *split* (secret share) every *sensitive* variable x.
 - $x = x_0 \perp x_1 \perp \ldots \perp x_d.$
 - $\perp: \oplus, \text{ or } + \text{ over } \mathbb{F}_{2^n}.$
 - Masking Order: d.
 - Order of security: $t \leq d$.
- Soundness: attack complexity is exponential w.r.t. t.

Higher-Order Masking

• Higher-order attacks are feasible [Messerges, CHES 2000].

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Higher-Order Masking

• Higher-order attacks are feasible [Messerges, CHES 2000].

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Both customized and generic countermeasures exists.

Higher-Order Masking

• Higher-order attacks are feasible [Messerges, CHES 2000].

- Both customized and generic countermeasures exists.
- Generic higher-order masking schemes:
 - arbitrary block ciphers (S-boxes).
 - arbitrary masking order (i.e., shares).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

9 Prouff and Roche scheme (CHES 2011)

based on MPC techniques.

Prouff and Roche scheme (CHES 2011)

based on MPC techniques.

② CGPQR scheme by *Carlet et al.* (FSE 2012)

based on polynomial representation of S-boxes.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Prouff and Roche scheme (CHES 2011)

based on MPC techniques.

② CGPQR scheme by *Carlet et al.* (FSE 2012)

- based on polynomial representation of S-boxes.
- Stable recompution method by Coron (EUROCRYPT 2014)

based on randomized masking tables.

Prouff and Roche scheme (CHES 2011)

based on MPC techniques.

CGPQR scheme by Carlet et al. (FSE 2012)

- based on polynomial representation of S-boxes.
- Table recompution method by Coron (EUROCRYPT 2014)
 - based on randomized masking tables.
 - Other specialized higher-order schemes:
 - ► GPQ scheme by *Genelle et al.* (CHES 2011): mainly for AES.

 Based on the probing circuit model by [ISW, CRYPTO 2003] and later extended by [PR, CHES 2010].

 Based on the probing circuit model by [ISW, CRYPTO 2003] and later extended by [PR, CHES 2010].

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Provides t^{th} order security when $d \ge 2t$.

- Based on the probing circuit model by [ISW, CRYPTO 2003] and later extended by [PR, CHES 2010].
- Provides t^{th} order security when $d \ge 2t$.
- Advantages:
 - More efficient than [PR11], comparable to [Coron14].
 - Smaller memory and randomness requirement than [Coron14].

- Based on the probing circuit model by [ISW, CRYPTO 2003] and later extended by [PR, CHES 2010].
- Provides t^{th} order security when $d \ge 2t$.
- Advantages:
 - More efficient than [PR11], comparable to [Coron14].
 - Smaller memory and randomness requirement than [Coron14].

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

• Recent works: [CPRR, FSE 2013], [RV, CHES 2013].

• Main challenge for masking block ciphers: masking of S-boxes.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Main challenge for masking block ciphers: masking of S-boxes.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• Reason: \mathbb{F}_2 -linear/-affine functions are easy to mask:

•
$$f_{lin}(x) = f_{lin}(x_0 + \cdots + x_d) = f_{lin}(x_0) + \cdots + f_{lin}(x_d)$$
.

• Main challenge for masking block ciphers: masking of S-boxes.

• Reason: \mathbb{F}_2 -linear/-affine functions are easy to mask:

•
$$f_{lin}(x) = f_{lin}(x_0 + \cdots + x_d) = f_{lin}(x_0) + \cdots + f_{lin}(x_d).$$

• Squaring is \mathbb{F}_2 -linear in \mathbb{F}_{2^n} : $(a+b)^2 = a^2 + b^2$.

• An (n, m)-S-box $(m \le n)$ can be identified with $f : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$.

• An (n, m)-S-box $(m \le n)$ can be identified with $f : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- By Lagrange interpolation,
 - ▶ $f(\cdot)$ can be (uniquely) represented by $P(x) \in \mathbb{F}_{2^n}[x]$, $\deg(P(x)) \leq 2^n - 1$.

- An (n,m)-S-box $(m \le n)$ can be identified with $f : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$.
- By Lagrange interpolation,
 - ▶ $f(\cdot)$ can be (uniquely) represented by $P(x) \in \mathbb{F}_{2^n}[x]$, $\deg(P(x)) \leq 2^n - 1$.
- Masking an S-box ⇒ securely evaluating the corresponding polynomial with shares.

• Task is to evaluate P(x) on (shared) input (x_0, \dots, x_d) .

- Task is to evaluate P(x) on (shared) input (x_0, \dots, x_d) .
- To evaluate any polynomial $P(x) \in \mathbb{F}_{2^n}[x]$, we need:
 - Linear operations: (polynomial) addition, multiplication by a scalar, (polynomial) squaring.

Non-Linear Multiplications (NLMs).

- Task is to evaluate P(x) on (shared) input (x_0, \dots, x_d) .
- To evaluate any polynomial $P(x) \in \mathbb{F}_{2^n}[x]$, we need:
 - Linear operations: (polynomial) addition, multiplication by a scalar, (polynomial) squaring.
 - Non-Linear Multiplications (NLMs).
- Each step above to be performed securely on the shares:
 - Linear operations with shares are cheap: O(d) time and randomness.
 - NLMs with shares are expensive: $O(d^2)$ time and randomness.

$\mathbb{F}_{2^n}\text{-}\mathsf{Polynomial}$ Evaluation: Cost Model

• To evaluate any polynomial $P(x) \in \mathbb{F}_{2^n}[x]$, given x.

$\mathbb{F}_{2^n}\text{-}\mathsf{Polynomial}$ Evaluation: Cost Model

- To evaluate any polynomial $P(x) \in \mathbb{F}_{2^n}[x]$, given x.
- **Ignore**: (polynomial) additions, scalar multiplications, (polynomial) squarings.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

$\mathbb{F}_{2^n}\text{-}\mathsf{Polynomial}$ Evaluation: Cost Model

- To evaluate any polynomial $P(x) \in \mathbb{F}_{2^n}[x]$, given x.
- **Ignore**: (polynomial) additions, scalar multiplications, (polynomial) squarings.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• Count: non-linear (polynomial) multiplications.

\mathbb{F}_{2^n} -Polynomial Evaluation: Cost Model

- To evaluate any polynomial $P(x) \in \mathbb{F}_{2^n}[x]$, given x.
- Ignore: (polynomial) additions, scalar multiplications, (polynomial) squarings.

- Count: non-linear (polynomial) multiplications.
- Example: Consider $q(x) \neq r(x) \in \mathbb{F}_{2^n}[x]$, $c \in \mathbb{F}_{2^n}$,
 - ignore: q(x) + r(x), $c \cdot q(x)$, $(q(x))^2$
 - count: $q(x) \times r(x)$

Previous Evaluation Methods

Overlage States 1 Cyclotomic Class Method [CGQPR12],

• worst-case complexity: atleast $2^n/n$ NLMs.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Previous Evaluation Methods

Ocyclotomic Class Method [CGQPR12],

- worst-case complexity: atleast $2^n/n$ NLMs.
- Parity-Split Method [CGQPR12],
 - worst-case complexity: $1.5 \cdot \sqrt{2^n}$ NLMs.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Previous Evaluation Methods

Ocyclotomic Class Method [CGQPR12],

- worst-case complexity: atleast 2ⁿ/n NLMs.
- Parity-Split Method [CGQPR12],
 - worst-case complexity: $1.5 \cdot \sqrt{2^n}$ NLMs.
- Oivide-and-Conquer Method [PS73, RV13],
 - non-generic: degree $2^n = N \approx \sqrt{N} (2^i 1)$.

• complexity: $\approx \sqrt{2^n}$ NLMs.

• Our results

Our Results

- New polynomial evaluation algorithm (over \mathbb{F}_{2^n}):
 - (Heuristic) worst-case complexity: $\approx 2 \cdot \sqrt{\frac{2^n}{n}}$ NLMs.

• Previous best: $O(\sqrt{2^n})$ NLMs.

Our Results

- New polynomial evaluation algorithm (over \mathbb{F}_{2^n}):
 - (Heuristic) worst-case complexity: $\approx 2 \cdot \sqrt{\frac{2^n}{n}}$ NLMs.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Previous best: $O(\sqrt{2^n})$ NLMs.
- New generic lower bound on evaluation complexity:

• Lower bound:
$$\approx \sqrt{\frac{2^n}{n}}$$
 NLMs.

Comparison of Generic Methods

n	4	5	6	7	8	9	10
Cyclotomic-Class method [CGPQR12]	3	5	11	17	33	53	105
Parity-Split method [CGPQR12]		6	10	14	22	30	46
This work		4	5	7	10	14	19

Table: Counting non-linear multiplications

(ロ)、(型)、(E)、(E)、 E) の(()

Application to S-boxes

	S-box								
Method	DES	PRESENT	SERPENT	CAMELLIA	CLEFIA				
CycloClass method [CGPQR12]	11	3	3	33	33				
Parity-Split [CGPQR12]	10	4	4	22	22				
Roy-Vivek [RV13]	7	3	3	15	15,16				
This work	4	2	2	10	10				

Table: Number of NLMs required for the CGPQR masking scheme.

◆□ ▶ < @ ▶ < E ▶ < E ▶ E 9000</p>

• Precompute a "closed" set $x^{L} = \{x^{i} \mid i \in L\}$ of monomials,

"closed" w.r.t. squaring.

9 Precompute a "closed" set $x^{L} = \{x^{i} | i \in L\}$ of monomials,

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

"closed" w.r.t. squaring.

② Generate t - 1 random polynomials $q_i(x) \stackrel{\$}{\leftarrow} \mathcal{P}(x^L)$.

• Precompute a "closed" set $x^{L} = \{x^{i} | i \in L\}$ of monomials,

"closed" w.r.t. squaring.

② Generate t - 1 random polynomials $q_i(x) \stackrel{\$}{\leftarrow} \mathcal{P}(x^L)$.

Solution Find t polynomials $p_i(x) \in \mathcal{P}(x^L)$ such that

$$P(x) = \sum_{i=1}^{t-1} p_i(x) \cdot q_i(x) + p_t(x).$$

• Precompute a "closed" set $x^{L} = \{x^{i} | i \in L\}$ of monomials,

"closed" w.r.t. squaring.

- **②** Generate t 1 random polynomials $q_i(x) \stackrel{\$}{\leftarrow} \mathcal{P}(x^L)$.
- Solution Find t polynomials $p_i(x) \in \mathcal{P}(x^L)$ such that

$$P(x) = \sum_{i=1}^{t-1} p_i(x) \cdot q_i(x) + p_t(x).$$

Solve a linear system for the unknown coefficients,

similar to the Lagrange interpolation technique.

• *Heuristic*: full rank if $t \cdot |L| \ge 2^n$.

(ロ)、(型)、(E)、(E)、 E) の(()

• *Heuristic*: full rank if $t \cdot |L| \ge 2^n$.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

• Total NLMs: $N_{mult} \approx \ell + t$.

- *Heuristic*: full rank if $t \cdot |L| \ge 2^n$.
- Total NLMs: $N_{mult} \approx \ell + t$.
- Optimal values: $t \approx \ell \approx \sqrt{\frac{2^n}{n}}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

•
$$N_{mult} \approx 2 \cdot \sqrt{\frac{2^n}{n}}.$$

- *Heuristic*: full rank if $t \cdot |L| \ge 2^n$.
- Total NLMs: $N_{mult} \approx \ell + t$.
- Optimal values: $t \approx \ell \approx \sqrt{\frac{2^n}{n}}$.

•
$$N_{mult} \approx 2 \cdot \sqrt{\frac{2^n}{n}}.$$

• **Open problem**: existence of *L*, and condition for full rank.

- Example: DES (6,4)-bit S-boxes.
 - Ignore leading two bits $\implies 2^{128}$ possible representations.

- Example: DES (6,4)-bit S-boxes.
 - Ignore leading two bits $\implies 2^{128}$ possible representations.

• Choose
$$L = C_0 \cup C_1 \cup C_3 \cup C_7$$
, and $q_1(x), q_2(x) \xleftarrow{\$} \mathcal{P}(x^L)$.

- Example: DES (6, 4)-bit S-boxes.
 - Ignore leading two bits $\implies 2^{128}$ possible representations.
 - Choose $L = C_0 \cup C_1 \cup C_3 \cup C_7$, and $q_1(x), q_2(x) \stackrel{\$}{\leftarrow} \mathcal{P}(x^L)$.
 - Find the decomposition: $P(x) = p_1(x) \cdot q_1(x) + p_2(x) \cdot q_2(x) + p_3(x)$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Example: DES (6, 4)-bit S-boxes.
 - Ignore leading two bits $\implies 2^{128}$ possible representations.
 - Choose $L = C_0 \cup C_1 \cup C_3 \cup C_7$, and $q_1(x), q_2(x) \stackrel{\$}{\leftarrow} \mathcal{P}(x^L)$.
 - Find the decomposition: $P(x) = p_1(x) \cdot q_1(x) + p_2(x) \cdot q_2(x) + p_3(x)$.

• For each $x_j \in \mathbb{F}_{2^6}$, we get 4 equations over \mathbb{F}_2 .

- Example: DES (6, 4)-bit S-boxes.
 - Ignore leading two bits $\implies 2^{128}$ possible representations.
 - Choose $L = C_0 \cup C_1 \cup C_3 \cup C_7$, and $q_1(x), q_2(x) \stackrel{\$}{\leftarrow} \mathcal{P}(x^L)$.
 - Find the decomposition: $P(x) = p_1(x) \cdot q_1(x) + p_2(x) \cdot q_2(x) + p_3(x)$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- For each $x_j \in \mathbb{F}_{2^6}$, we get 4 equations over \mathbb{F}_2 .
- Resulting matrix needs to have rank 256 only (not $384 = 6 \times 64$).

- Example: DES (6, 4)-bit S-boxes.
 - Ignore leading two bits $\implies 2^{128}$ possible representations.
 - Choose $L = C_0 \cup C_1 \cup C_3 \cup C_7$, and $q_1(x), q_2(x) \stackrel{\$}{\leftarrow} \mathcal{P}(x^L)$.
 - Find the decomposition: $P(x) = p_1(x) \cdot q_1(x) + p_2(x) \cdot q_2(x) + p_3(x)$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- For each $x_j \in \mathbb{F}_{2^6}$, we get 4 equations over \mathbb{F}_2 .
- Resulting matrix needs to have rank 256 only (not $384 = 6 \times 64$).
- Need only 4 NLMs (instead of 5 NLMs).

Implementation for DES

	No. of shares						
Method	3	5	7	9	11	13	
Roy-Vivek [RV13]	0.193	0.347	0.533	0.765	1.040	1.349	
Table Recomputation [Coron14]	0.096	0.221	0.413	0.597	0.893	1.409	
This work	0.250	0.417	0.603	0.819	1.051	1.312	

Table: Implementation in C on Intel Core i7. Execution time in ms.

・ロト・日本・ヨト・ヨー うへの

Our Results: Generic Lower Bounds

Theorem

There exists a polynomial $P(x) \in \mathbb{F}_{2^n}[x]$ such that

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 $\operatorname{NLM}(P(x)) \ge \sqrt{\frac{2^n}{n}} - 2.$

Our Results: Generic Lower Bounds

Theorem

There exists a polynomial $P(x) \in \mathbb{F}_{2^n}[x]$ such that

 $\operatorname{NLM}(P(x)) \ge \sqrt{\frac{2^n}{n}} - 2.$

• Significant improvement over $\lceil \log_2(n-1) \rceil$ bound [RV13].

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Our Results: Generic Lower Bounds

Theorem

There exists a polynomial $P(x) \in \mathbb{F}_{2^n}[x]$ such that $\operatorname{NLM}(P(x)) \ge \sqrt{\frac{2^n}{n}} - 2.$

- Significant improvement over $\lceil \log_2(n-1) \rceil$ bound [RV13].
- Proof based on a counting argument, similar to [PS73].
 - No. of possible polynomials using $r \text{ NLMs} \ge (2^n)^{2^n}$.

Generic Lower Bounds: Comparison

n	4	5	6	7	8	9	10	11	12
[RV13]	2	2	3	3	4	4	4	4	4
This work	0	1	2	3	4	6	9	12	17

Table: Lower bounds for non-linear complexity.

1 Rigorously prove the complexity of the new evaluation method.

Future Work

Q Rigorously prove the complexity of the new evaluation method.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Solve multivariate quadratic system to obtain $P(x) = \sum_{i=1}^{\binom{(t-1)/2}{2}} p_i(x) \cdot q_i(x) + p_t(x).$

Future Work

Q Rigorously prove the complexity of the new evaluation method.

- Solve multivariate quadratic system to obtain $P(x) = \sum_{i=1}^{\binom{(t-1)/2}{2}} p_i(x) \cdot q_i(x) + p_t(x).$
- Improve concrete lower/upper complexity bounds.
 - Evaluate DES with only 3 NLMs.

Future Work

- Q Rigorously prove the complexity of the new evaluation method.
- Solve multivariate quadratic system to obtain $P(x) = \sum_{i=1}^{\binom{(t-1)/2}{2}} p_i(x) \cdot q_i(x) + p_t(x).$
- Improve concrete lower/upper complexity bounds.
 - Evaluate DES with only 3 NLMs.
- Investigate further the cost model of [GPS, AFRICACRYPT 2014].

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Thank You! & Questions?