
Secure Conversion Between Boolean and Arithmetic
Masking of Any Order

Jean-Sébastien Coron Johann Großschädl Praveen Kumar Vadnala

University of Luxembourg, Luxembourg

CHES, 2014. Busan, Korea.

1 / 35

Countermeasures against side-channel attacks

Hiding

Shuffling, Dummy instructions, · · ·
Efficient but ad-hoc

Masking

Each sensitive variable is masked with a random value

Masking- ��
��*

HHHHj
x (s.v.)

r (random)

x � r

Second and higher order masking
Higher the number of masks used, better the security
Security can be proved

2 / 35

Countermeasures against side-channel attacks

Hiding

Shuffling, Dummy instructions, · · ·
Efficient but ad-hoc

Masking

Each sensitive variable is masked with a random value

Masking- ��
��*

HHHHj
x (s.v.)

r (random)

x � r

Second and higher order masking
Higher the number of masks used, better the security
Security can be proved

3 / 35

Masking types

Boolean masking

Masked using XOR operation
Compatible with: XOR, shift etc.

Arithmetic masking

Multiplicative masking

Conversion problem

Applications: IDEA, HMAC-SHA1, ARX based ciphers, GOST, ...

This talk : Conversion between Boolean and arithmetic masking

4 / 35

Masking types

Boolean masking

Masked using XOR operation
Compatible with: XOR, shift etc.

Arithmetic masking

Multiplicative masking

Conversion problem

Applications: IDEA, HMAC-SHA1, ARX based ciphers, GOST, ...

This talk : Conversion between Boolean and arithmetic masking

5 / 35

Masking types

Boolean masking

Masked using XOR operation
Compatible with: XOR, shift etc.

Arithmetic masking

Multiplicative masking

Conversion problem

Applications: IDEA, HMAC-SHA1, ARX based ciphers, GOST, ...

This talk : Conversion between Boolean and arithmetic masking

6 / 35

Masking types

Boolean masking

Masked using XOR operation
Compatible with: XOR, shift etc.

Arithmetic masking

Multiplicative masking

Conversion problem

Applications: IDEA, HMAC-SHA1, ARX based ciphers, GOST, ...

This talk : Conversion between Boolean and arithmetic masking

7 / 35

First order secure conversion

Goubin solution (CHES, 2001)

B→A: Constant number of operations
A→B: Number of operations proportional to the size of the masked
data

Improved A→B solution by Coron and Tchulkine (CHES, 2003)

Blandine Debraize’s solution (CHES, 2012)

Karroumi et al. secure addition (COSADE, 2014)

8 / 35

Higher order conversion

No higher order conversion algorithms to date

Genralizing Goubin’s solution to higher order?

Second order secure conversion by Vadnala-Großschädl at
SPACE-2013

First step but inefficient in practice
No generalization for any order

9 / 35

Higher order conversion

No higher order conversion algorithms to date

Genralizing Goubin’s solution to higher order?

Second order secure conversion by Vadnala-Großschädl at
SPACE-2013

First step but inefficient in practice
No generalization for any order

10 / 35

Our contributions

First higher order secure conversion - Two approaches

Perform addition directly on Boolean shares
Convert from one form to the other

Security proof in Ishai-Sahai and Wagner (ISW) framework

Application to HMAC-SHA-1

11 / 35

Our contributions

First higher order secure conversion - Two approaches

Perform addition directly on Boolean shares
Convert from one form to the other

Security proof in Ishai-Sahai and Wagner (ISW) framework

Application to HMAC-SHA-1

12 / 35

Our contributions

First higher order secure conversion - Two approaches

Perform addition directly on Boolean shares
Convert from one form to the other

Security proof in Ishai-Sahai and Wagner (ISW) framework

Application to HMAC-SHA-1

13 / 35

Proving masking schemes

Classical model

Limitations of classical model

ISW framework

14 / 35

Security model: ISW framework

Visualize the implementation of cryptosystem in terms of Boolean
circuit (C)

Theorem (Ishai, Sahai, Wagner)

There exists a perfectly t-private stateless transformer (T , I ,O) such that
T maps any stateless circuit C of size |C | and depth d to a randomized
stateless circuit of size O(n2 · |C |) and depth O(d log t), where n = 2t + 1.

Represent the circuit C using only NOT and AND gates

Converting NOT gate is easy: if x = x1 ⊕ x2 ⊕ · · · ⊕ xn then
NOT(x) = NOT(x1)⊕ x2 ⊕ · · · ⊕ xn

How to convert AND gate? SecAnd function

15 / 35

Security model: ISW framework

Visualize the implementation of cryptosystem in terms of Boolean
circuit (C)

Theorem (Ishai, Sahai, Wagner)

There exists a perfectly t-private stateless transformer (T , I ,O) such that
T maps any stateless circuit C of size |C | and depth d to a randomized
stateless circuit of size O(n2 · |C |) and depth O(d log t), where n = 2t + 1.

Represent the circuit C using only NOT and AND gates

Converting NOT gate is easy: if x = x1 ⊕ x2 ⊕ · · · ⊕ xn then
NOT(x) = NOT(x1)⊕ x2 ⊕ · · · ⊕ xn

How to convert AND gate? SecAnd function

16 / 35

Security model: ISW framework

Visualize the implementation of cryptosystem in terms of Boolean
circuit (C)

Theorem (Ishai, Sahai, Wagner)

There exists a perfectly t-private stateless transformer (T , I ,O) such that
T maps any stateless circuit C of size |C | and depth d to a randomized
stateless circuit of size O(n2 · |C |) and depth O(d log t), where n = 2t + 1.

Represent the circuit C using only NOT and AND gates

Converting NOT gate is easy: if x = x1 ⊕ x2 ⊕ · · · ⊕ xn then
NOT(x) = NOT(x1)⊕ x2 ⊕ · · · ⊕ xn

How to convert AND gate? SecAnd function

17 / 35

Higher order secure addition

Represent modular addition as Boolean circuit

Apply ISW method

Two approaches

A modular addition of two k-bit variables x and y can be defined
recursively as (x + y)(i) = x (i) ⊕ y (i) ⊕ c(i), where{

c(0) = 0
∀i ≥ 1, c(i) = (x (i−1) ∧ y (i−1))⊕ (x (i−1) ∧ c(i−1))⊕ (c(i−1) ∧ y (i−1))

Use Goubin’s formula: x + y = x ⊕ y ⊕ uk−1, where uk−1 is obtained
from the following recursion formula:{

u0 = 0
∀i ≥ 0, ui+1 = 2[ui ∧ (x ⊕ y)⊕ (x ∧ y)]

18 / 35

Higher order secure addition

Represent modular addition as Boolean circuit

Apply ISW method

Two approaches

A modular addition of two k-bit variables x and y can be defined
recursively as (x + y)(i) = x (i) ⊕ y (i) ⊕ c(i), where{

c(0) = 0
∀i ≥ 1, c(i) = (x (i−1) ∧ y (i−1))⊕ (x (i−1) ∧ c(i−1))⊕ (c(i−1) ∧ y (i−1))

Use Goubin’s formula: x + y = x ⊕ y ⊕ uk−1, where uk−1 is obtained
from the following recursion formula:{

u0 = 0
∀i ≥ 0, ui+1 = 2[ui ∧ (x ⊕ y)⊕ (x ∧ y)]

19 / 35

First variant

Algorithm 1 SecAdd

Input: (xi) and (yi) for 1 ≤ i ≤ n

Output: (zi) for 1 ≤ i ≤ n, with
n⊕

i=1

zi =
n⊕

i=1

xi +
n⊕

i=1

yi

1: (c
(0)
i)1≤i≤n ← 0 . Initially carry is zero

2: for j = 0 to k − 2 do . Compute carry bit by bit

3: (xy
(j)
i)1≤i≤n ← SecAnd((x

(j)
i)1≤i≤n, (y

(j)
i)1≤i≤n) . x (j) ∧ y (j)

4: (xc
(j)
i)1≤i≤n ← SecAnd((x

(j)
i)1≤i≤n, (c

(j)
i)1≤i≤n) . x (j) ∧ c(j)

5: (yc
(j)
i)1≤i≤n ← SecAnd((y

(j)
i)1≤i≤n, (c

(j)
i)1≤i≤n) . y (j) ∧ c(j)

6: (c
(j+1)
i)1≤i≤n ← (xy

(j)
i)1≤i≤n ⊕ (xc

(j)
i)1≤i≤n ⊕ (yc

(j)
i)1≤i≤n

7: end for
8: (zi)1≤i≤n ← (xi)1≤i≤n ⊕ (yi)1≤i≤n ⊕ (ci)1≤i≤n . z = x + y = x ⊕ y ⊕ c
9: return (zi)1≤i≤n

20 / 35

Second variant

Algorithm 2 SecAddGoubin

Input: (xi) and (yi) for 1 ≤ i ≤ n

Output: (zi) for 1 ≤ i ≤ n, with
n⊕

i=1

zi =
n⊕

i=1

xi +
n⊕

i=1

yi

1: (wi)1≤i≤n ← SecAnd((xi)1≤i≤n, (yi)1≤i≤n) . ω = x ∧ y
2: (ui)1≤i≤n ← 0 . Initialize shares of u to zero
3: (ai)1≤i≤n ← (xi)1≤i≤n ⊕ (yi)1≤i≤n . a = x ⊕ y
4: for j = 1 to k − 1 do
5: (uai)1≤i≤n ← SecAnd

(
(ui)1≤i≤n, (ai)1≤i≤n

)
6: (ui)1≤i≤n ← (uai)1≤i≤n ⊕ (wi)1≤i≤n
7: (ui)1≤i≤n ← 2(ui)1≤i≤n . u ← 2(u ∧ a⊕ ω)
8: end for
9: (zi)1≤i≤n ← (xi)1≤i≤n ⊕ (yi)1≤i≤n ⊕ (ui)1≤i≤n . z = x + y = x ⊕ y ⊕ u

10: return (zi)1≤i≤n

21 / 35

Analysis

Both algorithms have running time in O(n2k)

SecAnd: O(n2)
k size of the shares

In practice, second variant is more efficient

Less calls to SecAnd function
No need to perform bit manipulations

22 / 35

Secure conversion from arithmetic to Boolean masking:
Simple solution

Assume x = A1 + · · ·+ An

Re-share each of the arithmetic shares Ai (1 ≤ i ≤ n) into n random
Boolean shares xi ,j (1 ≤ j ≤ n) so that Ai = xi ,1 ⊕ · · · ⊕ xi ,n

Ai

x1i
x2i

...

xni

The sensitive variable x is now given as:

x = (x1,1 ⊕ · · · ⊕ x1,n) + · · ·+ (xn,1 ⊕ · · · ⊕ xn,n)

23 / 35

Secure conversion from arithmetic to Boolean masking:
Simple solution

Assume x = A1 + · · ·+ An

Re-share each of the arithmetic shares Ai (1 ≤ i ≤ n) into n random
Boolean shares xi ,j (1 ≤ j ≤ n) so that Ai = xi ,1 ⊕ · · · ⊕ xi ,n

Ai

x1i
x2i

...

xni

The sensitive variable x is now given as:

x = (x1,1 ⊕ · · · ⊕ x1,n) + · · ·+ (xn,1 ⊕ · · · ⊕ xn,n)

24 / 35

Secure conversion from arithmetic to Boolean masking:
Simple solution

Now perform secure addition using one of the variants

A1 A2 · · ·A3 An

· · ·

SecAdd

SecAdd

SecAdd

x = x1 ⊕ · · · ⊕ xn

Time complexity: O(n3k)

25 / 35

Improved conversion from Arithmetic to Boolean masking

Use lesser shares at every step instead of n2 shares

Build a bottom-up solution

Start with two shares for every Ai

A1

x11 x12

A2

x22 x22

· · · An

xn1
xn2

26 / 35

Improved conversion from Arithmetic to Boolean masking

Use lesser shares at every step instead of n2 shares

Build a bottom-up solution

Start with two shares for every Ai

A1

x11 x12

A2

x22 x22

· · · An

xn1
xn2

27 / 35

Improved conversion from Arithmetic to Boolean masking

At every step, halve the number of additive shares and double the
number of Boolean shares (Binary tree)

A1

x11 x12

A2

x22 x22

· · · An

xn1
xn2

y11 y21

SecAdd

Expand

y′11 y′12 y′13 y′14

Number of shares ≤ 2n at every level =⇒ O(n2k) complexity

28 / 35

Putting it altogether...

Algorithm 3 ConvertA→B

Input: (Ai) for 1 ≤ i ≤ n

Output: (zi) for 1 ≤ i ≤ n, with
n⊕

i=1

zi =
n∑

i=1

Ai

1: If n = 1 then return A1

2: (xi)1≤i≤n/2 ← ConvertA→B
(
(Ai)1≤i≤n/2)

)
3: (x ′i)1≤i≤n ← Expand

(
(xi)1≤i≤n/2)

)
.

n⊕
i=1

x ′
i =

n/2⊕
i=1

xi =
n/2∑
i=1

Ai

4: (yi)1≤i≤n/2 ← ConvertA→B
(
(Ai)n/2+1≤i≤n)

)
5: (y ′i)1≤i≤n ← Expand

(
(yi)1≤i≤n/2)

)
.

n⊕
i=1

y ′
i =

n/2⊕
i=1

yi =
n∑

i=n/2+1

Ai

6: (zi)1≤i≤n ← SecAdd ((x ′i)1≤i≤n, (y ′i)1≤i≤n)

7: return (zi)1≤i≤n .
n⊕

i=1

zi =
n⊕

i=1

x ′
i +

n⊕
i=1

y ′
i =

n∑
i=1

Ai

29 / 35

Secure conversion from Boolean to arithmetic masking

Given x = x1 ⊕ · · · ⊕ xn compute A1, · · · ,An so that
x = A1 + · · ·+ An

Idea: Take advantage of ConvertA→B and SecAdd

Generate (Ai)1≤i≤n−1 randomly

Compute An = x − (A1 + · · ·+ An−1) = x + (−A1 − · · · − An−1)

Complexity : O(n2k), but inefficient compared to ConvertA→B

30 / 35

Secure conversion from Boolean to arithmetic masking

Given x = x1 ⊕ · · · ⊕ xn compute A1, · · · ,An so that
x = A1 + · · ·+ An

Idea: Take advantage of ConvertA→B and SecAdd

Generate (Ai)1≤i≤n−1 randomly

Compute An = x − (A1 + · · ·+ An−1) = x + (−A1 − · · · − An−1)

Complexity : O(n2k), but inefficient compared to ConvertA→B

31 / 35

Experimental results

Algorithm Time rand

second-order addition
Algorithm 1 87 1240
Algorithm 2 26 320

second-order conversion
Algorithm 3 54 484

Algorithm B→A 81 822

third-order addition
Algorithm 1 156 2604
Algorithm 2 46 672

third-order conversion
Algorithm 3 121 1288

Algorithm B→A 162 1997

Table : Execution times of all algorithms (in thousands of clock cycles) for
t = 2, 3 and the number of calls to the rand function

32 / 35

Application to HMAC-SHA-1

Algorithm Time Penalty

HMAC-SHA-1 104 1

second-order addition
Algorithm 1 57172 549
Algorithm 2 17847 171

second-order conversion
Algorithm 3, B→A 62669 602

third-order addition
Algorithm 1 106292 987
Algorithm 2 31195 299

third-order conversion
Algorithm 3, B→A 127348 1224

Table : Execution times of second and third-order secure masking (in thousands
of clock cycles) and performance penalty compared to an unmasked
implementation of HMAC-SHA-1

33 / 35

Conclusion

First higher order secure B→A and A→B conversion

Proofs in ISW model

Generic solution: Applicable to number of cryptosystems

Future work

Improved solution for B→A?
Improved solutions for n ≥ 3?

34 / 35

Conclusion

First higher order secure B→A and A→B conversion

Proofs in ISW model

Generic solution: Applicable to number of cryptosystems

Future work

Improved solution for B→A?
Improved solutions for n ≥ 3?

35 / 35

	Introduction
	Side channel attacks
	Countermeasures
	Masking types

	Secure addition
	Secure conversion from arithmetic to Boolean masking
	Secure conversion from Boolean to arithmetic masking
	Experimental results

