Secure Conversion Between Boolean and Arithmetic Masking of Any Order

Jean-Sébastien Coron Johann Großschädl Praveen Kumar Vadnala

University of Luxembourg, Luxembourg

CHES, 2014. Busan, Korea.

Hiding

- Shuffling, Dummy instructions, · · ·
- Efficient but ad-hoc
- Masking
 - Each sensitive variable is masked with a random value

- Second and higher order masking
- Higher the number of masks used, better the security
- Security can be proved

- Hiding
 - Shuffling, Dummy instructions, · · ·
 - Efficient but ad-hoc
- Masking
 - Each sensitive variable is masked with a random value

- Second and higher order masking
- Higher the number of masks used, better the security
- Security can be proved

Boolean masking

- $\bullet\,$ Masked using ${\rm XOR}$ operation
- Compatible with: XOR, shift etc.
- Arithmetic masking
- Multiplicative masking
- Conversion problem
- Applications: IDEA, HMAC-SHA1, ARX based ciphers, GOST, ...
- This talk : Conversion between Boolean and arithmetic masking

Boolean masking

- $\bullet\,$ Masked using ${\rm XOR}$ operation
- Compatible with: XOR, shift etc.
- Arithmetic masking
- Multiplicative masking
- Conversion problem
- Applications: IDEA, HMAC-SHA1, ARX based ciphers, GOST, ...
- This talk : Conversion between Boolean and arithmetic masking

Boolean masking

- $\bullet\,$ Masked using ${\rm XOR}$ operation
- Compatible with: XOR, shift etc.
- Arithmetic masking
- Multiplicative masking
- Conversion problem
- Applications: IDEA, HMAC-SHA1, ARX based ciphers, GOST, ...
- This talk : Conversion between Boolean and arithmetic masking

- Boolean masking
 - $\bullet\,$ Masked using ${\rm XOR}$ operation
 - Compatible with: XOR, shift etc.
- Arithmetic masking
- Multiplicative masking
- Conversion problem
- Applications: IDEA, HMAC-SHA1, ARX based ciphers, GOST, ...
- This talk : Conversion between Boolean and arithmetic masking

- Goubin solution (CHES, 2001)
 - $\bullet~$ B ${\rightarrow}$ A: Constant number of operations
 - A \rightarrow B: Number of operations proportional to the size of the masked data
- Improved $A \rightarrow B$ solution by Coron and Tchulkine (CHES, 2003)
- Blandine Debraize's solution (CHES, 2012)
- Karroumi et al. secure addition (COSADE, 2014)

- No higher order conversion algorithms to date
- Genralizing Goubin's solution to higher order?
- Second order secure conversion by Vadnala-Großschädl at SPACE-2013
 - First step but inefficient in practice
 - No generalization for any order

- No higher order conversion algorithms to date
- Genralizing Goubin's solution to higher order?
- Second order secure conversion by Vadnala-Großschädl at SPACE-2013
 - First step but inefficient in practice
 - No generalization for any order

• First higher order secure conversion - Two approaches

- Perform addition directly on Boolean shares
- Convert from one form to the other
- Security proof in Ishai-Sahai and Wagner (ISW) framework
- Application to HMAC-SHA-1

- First higher order secure conversion Two approaches
 - Perform addition directly on Boolean shares
 - Convert from one form to the other
- Security proof in Ishai-Sahai and Wagner (ISW) framework
- Application to HMAC-SHA-1

- First higher order secure conversion Two approaches
 - Perform addition directly on Boolean shares
 - Convert from one form to the other
- Security proof in Ishai-Sahai and Wagner (ISW) framework
- Application to HMAC-SHA-1

- Classical model
- Limitations of classical model
- ISW framework

Security model: ISW framework

• Visualize the implementation of cryptosystem in terms of Boolean circuit (*C*)

Theorem (Ishai, Sahai, Wagner)

There exists a perfectly t-private stateless transformer (T, I, O) such that T maps any stateless circuit C of size |C| and depth d to a randomized stateless circuit of size $O(n^2 \cdot |C|)$ and depth $O(d \log t)$, where n = 2t + 1.

- Represent the circuit C using only NOT and AND gates
- Converting NOT gate is easy: if $x = x_1 \oplus x_2 \oplus \cdots \oplus x_n$ then NOT $(x) = NOT(x_1) \oplus x_2 \oplus \cdots \oplus x_n$
- How to convert AND gate? SecAnd function

• Visualize the implementation of cryptosystem in terms of Boolean circuit (*C*)

Theorem (Ishai, Sahai, Wagner)

There exists a perfectly t-private stateless transformer (T, I, O) such that T maps any stateless circuit C of size |C| and depth d to a randomized stateless circuit of size $O(n^2 \cdot |C|)$ and depth $O(d \log t)$, where n = 2t + 1.

- Represent the circuit C using only NOT and AND gates
- Converting NOT gate is easy: if $x = x_1 \oplus x_2 \oplus \cdots \oplus x_n$ then NOT $(x) = NOT(x_1) \oplus x_2 \oplus \cdots \oplus x_n$
- How to convert AND gate? SecAnd function

• Visualize the implementation of cryptosystem in terms of Boolean circuit (*C*)

Theorem (Ishai, Sahai, Wagner)

There exists a perfectly t-private stateless transformer (T, I, O) such that T maps any stateless circuit C of size |C| and depth d to a randomized stateless circuit of size $O(n^2 \cdot |C|)$ and depth $O(d \log t)$, where n = 2t + 1.

- Represent the circuit C using only NOT and AND gates
- Converting NOT gate is easy: if $x = x_1 \oplus x_2 \oplus \cdots \oplus x_n$ then $NOT(x) = NOT(x_1) \oplus x_2 \oplus \cdots \oplus x_n$
- How to convert AND gate? SecAnd function

Higher order secure addition

- Represent modular addition as Boolean circuit
- Apply ISW method
- Two approaches
 - A modular addition of two k-bit variables x and y can be defined recursively as $(x + y)^{(i)} = x^{(i)} \oplus y^{(i)} \oplus c^{(i)}$, where

$$\left\{ \begin{array}{l} c^{(0)} = 0 \\ \forall i \geq 1, c^{(i)} = (x^{(i-1)} \wedge y^{(i-1)}) \oplus (x^{(i-1)} \wedge c^{(i-1)}) \oplus (c^{(i-1)} \wedge y^{(i-1)}) \end{array} \right.$$

 Use Goubin's formula: x + y = x ⊕ y ⊕ u_{k-1}, where u_{k-1} is obtained from the following recursion formula:

$$\begin{cases} u_0 = 0 \\ \forall i \ge 0, u_{i+1} = 2[u_i \land (x \oplus y) \oplus (x \land y)] \end{cases}$$

Higher order secure addition

- Represent modular addition as Boolean circuit
- Apply ISW method
- Two approaches
 - A modular addition of two k-bit variables x and y can be defined recursively as $(x + y)^{(i)} = x^{(i)} \oplus y^{(i)} \oplus c^{(i)}$, where

$$\left\{ \begin{array}{l} c^{(0)} = 0 \\ \forall i \geq 1, c^{(i)} = (x^{(i-1)} \land y^{(i-1)}) \oplus (x^{(i-1)} \land c^{(i-1)}) \oplus (c^{(i-1)} \land y^{(i-1)}) \end{array} \right.$$

 Use Goubin's formula: x + y = x ⊕ y ⊕ u_{k-1}, where u_{k-1} is obtained from the following recursion formula:

$$\begin{cases} u_0 = 0 \\ \forall i \ge 0, u_{i+1} = 2[u_i \land (x \oplus y) \oplus (x \land y)] \end{cases}$$

Algorithm 1 SecAdd

Input: (x_i) and (y_i) for $1 \le i \le n$ **Output:** (z_i) for $1 \le i \le n$, with $\bigoplus_{i=1}^{n} z_i = \bigoplus_{i=1}^{n} x_i + \bigoplus_{i=1}^{n} y_i$ i-11: $(c_i^{(0)})_{1 < i < n} \leftarrow 0$ ▷ Initially carry is zero 2: **for** i = 0 to k - 2 **do** Compute carry bit by bit $(xv_{i}^{(j)})_{1 \le i \le n} \leftarrow \text{SecAnd}((x_{i}^{(j)})_{1 \le i \le n}, (y_{i}^{(j)})_{1 \le i \le n})$ $\triangleright x^{(j)} \wedge y^{(j)}$ 3. $(xc_i^{(j)})_{1 \le i \le n} \leftarrow \text{SecAnd}((x_i^{(j)})_{1 \le i \le n}, (c_i^{(j)})_{1 \le i \le n})$ $\triangleright x^{(j)} \wedge c^{(j)}$ 4: 5: $(yc_i^{(j)})_{1 \le i \le n} \leftarrow \text{SecAnd}((y_i^{(j)})_{1 \le i \le n}, (c_i^{(j)})_{1 \le i \le n})$ $\triangleright v^{(j)} \wedge c^{(j)}$ $(c_{i}^{(j+1)})_{1 \le i \le n} \leftarrow (xy_{i}^{(j)})_{1 \le i \le n} \oplus (xc_{i}^{(j)})_{1 \le i \le n} \oplus (yc_{i}^{(j)})_{1 \le i \le n}$ 6: 7: end for 8: $(z_i)_{1 \le i \le n} \leftarrow (x_i)_{1 \le i \le n} \oplus (y_i)_{1 \le i \le n} \oplus (c_i)_{1 \le i \le n}$ $\triangleright z = x + y = x \oplus y \oplus c$ 9: return $(z_i)_{1 < i < n}$

Algorithm 2 SecAddGoubin

Input: (x_i) and (y_i) for $1 \le i \le n$ **Output:** (z_i) for $1 \le i \le n$, with $\bigoplus_{i=1}^n z_i = \bigoplus_{i=1}^n x_i + \bigoplus_{i=1}^n y_i$ 1: $(w_i)_{1 \le i \le n} \leftarrow \text{SecAnd}((x_i)_{1 \le i \le n}, (y_i)_{1 \le i \le n})$ $\triangleright \omega = x \wedge y$ 2: $(u_i)_{1 \leq i \leq n} \leftarrow 0$ \triangleright Initialize shares of *u* to zero 3: $(a_i)_{1 \le i \le n} \leftarrow (x_i)_{1 \le i \le n} \oplus (y_i)_{1 \le i \le n}$ $\triangleright a = x \oplus y$ 4: for i = 1 to k - 1 do 5: $(ua_i)_{1 \le i \le n} \leftarrow \operatorname{SecAnd}((u_i)_{1 \le i \le n}, (a_i)_{1 \le i \le n})$ $(u_i)_{1 \le i \le n} \leftarrow (ua_i)_{1 \le i \le n} \oplus (w_i)_{1 \le i \le n}$ 6: 7: $(u_i)_{1 \le i \le n} \leftarrow 2(u_i)_{1 \le i \le n}$ $\triangleright u \leftarrow 2(u \land a \oplus \omega)$ 8: end for 9: $(z_i)_{1 \le i \le n} \leftarrow (x_i)_{1 \le i \le n} \oplus (y_i)_{1 \le i \le n} \oplus (u_i)_{1 \le i \le n}$ $\triangleright z = x + y = x \oplus y \oplus u$ 10: return $(z_i)_{1 \le i \le n}$

- Both algorithms have running time in $\mathcal{O}(n^2k)$
 - SecAnd: $\mathcal{O}(n^2)$
 - k size of the shares
- In practice, second variant is more efficient
 - Less calls to SecAnd function
 - No need to perform bit manipulations

Secure conversion from arithmetic to Boolean masking: Simple solution

• Assume
$$x = A_1 + \cdots + A_n$$

• Re-share each of the arithmetic shares A_i $(1 \le i \le n)$ into n random Boolean shares $x_{i,j}$ $(1 \le j \le n)$ so that $A_i = x_{i,1} \oplus \cdots \oplus x_{i,n}$

• The sensitive variable x is now given as:

 $x = (x_{1,1} \oplus \cdots \oplus x_{1,n}) + \cdots + (x_{n,1} \oplus \cdots \oplus x_{n,n})$

Secure conversion from arithmetic to Boolean masking: Simple solution

• Assume
$$x = A_1 + \cdots + A_n$$

• Re-share each of the arithmetic shares A_i $(1 \le i \le n)$ into n random Boolean shares $x_{i,j}$ $(1 \le j \le n)$ so that $A_i = x_{i,1} \oplus \cdots \oplus x_{i,n}$

• The sensitive variable x is now given as:

$$x = (x_{1,1} \oplus \cdots \oplus x_{1,n}) + \cdots + (x_{n,1} \oplus \cdots \oplus x_{n,n})$$

Secure conversion from arithmetic to Boolean masking: Simple solution

• Now perform secure addition using one of the variants

• Time complexity: $\mathcal{O}(n^3k)$

Improved conversion from Arithmetic to Boolean masking

- Use lesser shares at every step instead of n^2 shares
- Build a bottom-up solution
- Start with two shares for every A_i

Improved conversion from Arithmetic to Boolean masking

- Use lesser shares at every step instead of n^2 shares
- Build a bottom-up solution
- Start with two shares for every A_i

Improved conversion from Arithmetic to Boolean masking

• At every step, halve the number of additive shares and double the number of Boolean shares (Binary tree)

• Number of shares $\leq 2n$ at every level $\implies \mathcal{O}(n^2k)$ complexity

Algorithm 3 ConvertA→B

Input:
$$(A_i)$$
 for $1 \le i \le n$
Output: (z_i) for $1 \le i \le n$, with $\bigoplus_{i=1}^n z_i = \sum_{i=1}^n A_i$
1: If $n = 1$ then return A_1
2: $(x_i)_{1\le i\le n/2} \leftarrow \text{ConvertA} \rightarrow B\left((A_i)_{1\le i\le n/2}\right)$
3: $(x'_i)_{1\le i\le n} \leftarrow \text{Expand}\left((x_i)_{1\le i\le n/2}\right)$
4: $(y_i)_{1\le i\le n/2} \leftarrow \text{ConvertA} \rightarrow B\left((A_i)_{n/2+1\le i\le n}\right)$
5: $(y'_i)_{1\le i\le n} \leftarrow \text{Expand}\left((y_i)_{1\le i\le n/2}\right)$
6: $(z_i)_{1\le i\le n} \leftarrow \text{SecAdd}\left((x'_i)_{1\le i\le n}, (y'_i)_{1\le i\le n}\right)$
7: return $(z_i)_{1\le i\le n}$
 $b \bigoplus_{i=1}^n z_i = \bigoplus_{i=1}^n x'_i + \bigoplus_{i=1}^n y'_i = \sum_{i=1}^n A_i$

- Given $x = x_1 \oplus \cdots \oplus x_n$ compute A_1, \cdots, A_n so that $x = A_1 + \cdots + A_n$
- \bullet Idea: Take advantage of ConvertA ${\rightarrow}B$ and SecAdd
- Generate $(A_i)_{1 \le i \le n-1}$ randomly
- Compute $A_n = x (A_1 + \dots + A_{n-1}) = x + (-A_1 \dots A_{n-1})$
- Complexity : $\mathcal{O}(n^2k)$, but inefficient compared to ConvertA \rightarrow B

- Given $x = x_1 \oplus \cdots \oplus x_n$ compute A_1, \cdots, A_n so that $x = A_1 + \cdots + A_n$
- \bullet Idea: Take advantage of ConvertA ${\rightarrow}B$ and SecAdd
- Generate $(A_i)_{1 \le i \le n-1}$ randomly
- Compute $A_n = x (A_1 + \dots + A_{n-1}) = x + (-A_1 \dots A_{n-1})$
- Complexity : $\mathcal{O}(n^2k)$, but inefficient compared to ConvertA \rightarrow B

Experimental results

Algorithm	Time	rand	
second-order addition			
Algorithm 1	87	1240	
Algorithm 2	26	320	
second-order conversion			
Algorithm 3	54	484	
Algorithm $B \rightarrow A$	81	822	
third-order addition			
Algorithm 1	156	2604	
Algorithm 2	46	672	
third-order conversion			
Algorithm 3	121	1288	
Algorithm $B \rightarrow A$	162	1997	

Table : Execution times of all algorithms (in thousands of clock cycles) for t = 2, 3 and the number of calls to the rand function

Application to HMAC-SHA-1

Algorithm	Time	Penalty	
HMAC-SHA-1	104	1	
second-order addition			
Algorithm 1	57172	549	
Algorithm 2	17847	171	
second-order conversion			
Algorithm 3, $B \rightarrow A$	62669	602	
third-order addition			
Algorithm 1	106292	987	
Algorithm 2	31195	299	
third-order conversion			
Algorithm 3, $B \rightarrow A$	127348	1224	

 $\label{eq:Table:Execution times of second and third-order secure masking (in thousands of clock cycles) and performance penalty compared to an unmasked implementation of HMAC-SHA-1$

- \bullet First higher order secure B ${\rightarrow}A$ and A ${\rightarrow}B$ conversion
- Proofs in ISW model
- Generic solution: Applicable to number of cryptosystems

• Future work

- Improved solution for $B{\rightarrow}A?$
- Improved solutions for $n \ge 3$?

- \bullet First higher order secure B ${\rightarrow}A$ and A ${\rightarrow}B$ conversion
- Proofs in ISW model
- Generic solution: Applicable to number of cryptosystems
- Future work
 - Improved solution for $B \rightarrow A$?
 - Improved solutions for $n \ge 3$?