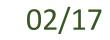

Secure Lightweight Entity Authentication with Strong PUFs: Mission Impossible?

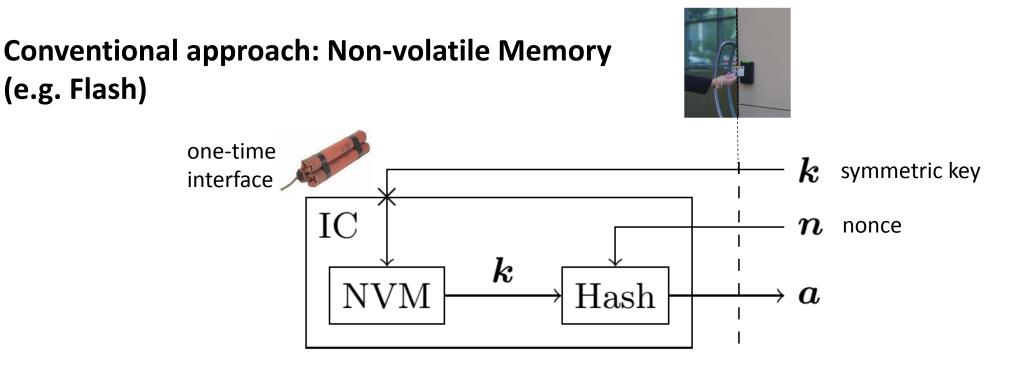
Jeroen Delvaux^{1,2}, Dawu Gu², Dries Schellekens¹, Ingrid Verbauwhede¹

University of Leuven (KU Leuven) and iMinds, Belgium
 Shanghai Jiao Tong University, China

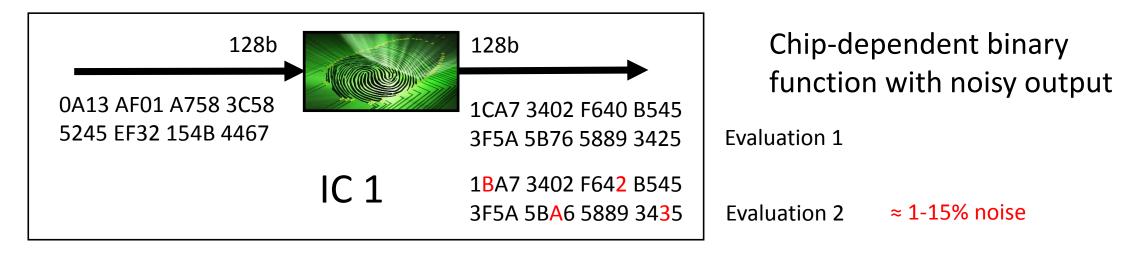


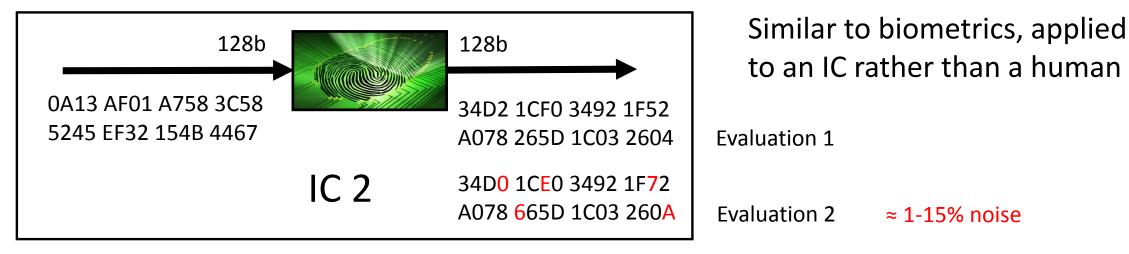
Contents

- Mission: Secure Lightweight Entity Authentication
- Physically Unclonable Functions (PUFs). How can they help?
- 8 PUF Entity Authentication protocols
 - Security and practicality analysis
 - No protocol details here, only properties (limited presentation time)
- Conclusion



03/17 Lightweight Entity Authentication 2 parties sharing a secret e.g. building access card IC (CARD) prover SERVER verifier - Resource-constrained - Secure storage - Low-cost - Computational power **Side-channels Fault injection** protocol Invasion **Eavesdropping Manipulation SECURITY = HARD SECURITY = EASY** Replay


Lightweight Entity Authentication with PUFs?


NVM: High manufacturing cost Flash floating gate ≠ CMOS compatible PUFs = CMOS compatible

NVM: Vulnerable to physical attacks Robust electrical storage PUFs = chemical storage 04/17

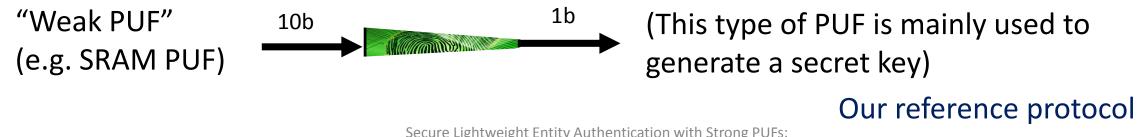
PUFs = Physically Unclonable Functions

05/17

PUFs = Physically Unclonable Functions

Does not exist, but all 8 protocols need it to counteract brute-force and random guessing

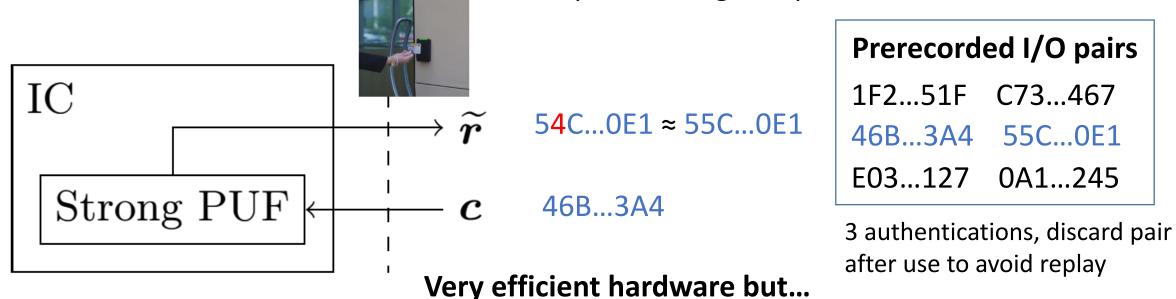
The protocols need:



+ lightweight solution for output expansion: repeated evaluation e.g. *Out* = PUF(PRNG(*In*))

06/17

Note: For convenience, we define strong PUFs using the popular more recent notion of large input space rather than the original definition


The protocols cannot use:

Secure Lightweight Entity Authentication with Strong PUFs: Mission Impossible?

Entity Authentication: Basic strong PUF protocol ^{07/17}

No secure instantiation: PUF modeling attacks

- PUF I/O behavior is correlated
- Mathematical clone: learn full I/O behavior given a small training set (machine learning)
- No PUF has valid claim to be resistant and lightweight

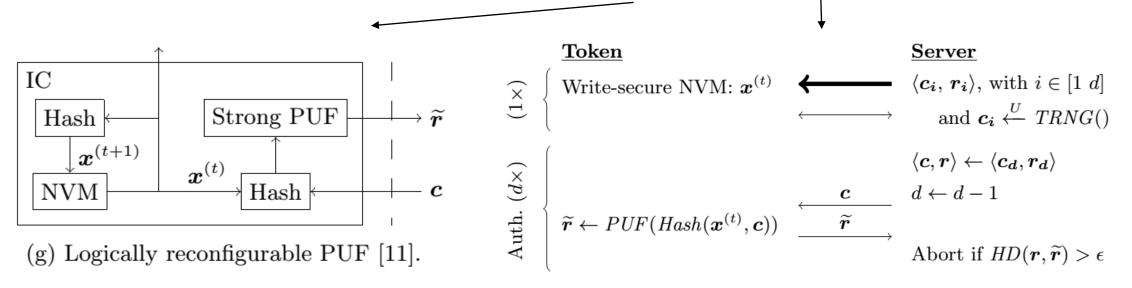
All 7 other protocols have additional building blocks: Hash, TRNG, Error-Correcting Code, ...

8 Strong PUF Entity Authentication Protocols

- Basic
- Controlled
- Öztűrk et al.
- Hammouri et al.

- (2001*,* PhD MIT) [–]
- d (2002, ACM CCS)
- al. (2008, PerCom)
 - (2008, journal)

- Logical Reconfiguration
- Reverse Fuzzy Extractor
- Slender
- Converse


(2011, CHES & journal) (2012, FC) (2012, SP & journal)

08/17

(2012, DATE & TRUST)

OUR FIRST CONTRIBUTION: FIRST OVERVIEW

Common framework with reference, same notation (IC block diagram & protocol), initiate comparison

Secure Lightweight Entity Authentication with Strong PUFs: Mission Impossible?

8 Strong PUF Entity Authentication Protocols

OUR SECOND CONTRIBUTION: FIRST ANALYSIS

Security of the Protocol

Impersonation?

Denial-Of-Service?

The next 7 slides Severe issues for all-but-one protocol. We do not recommend their usage

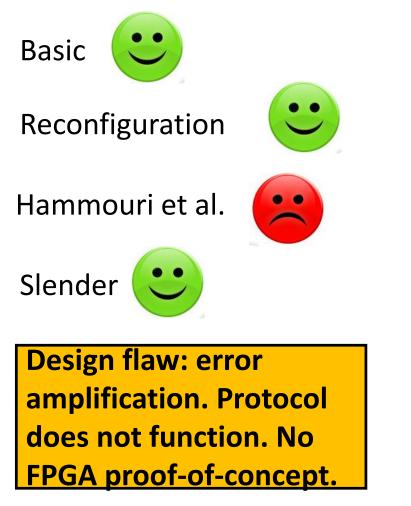
Practicality of the Protocol

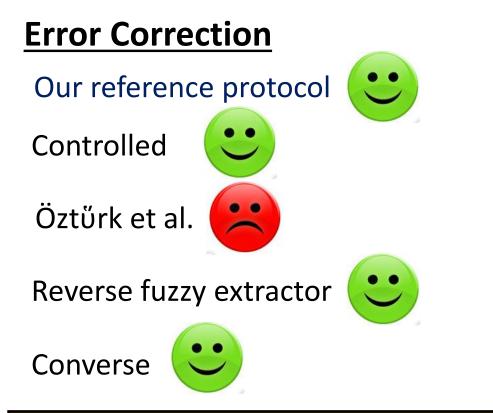
Are the PUF advantages (w.r.t. NVM) preserved?

- Low-cost manufacturing
- Improved physical security

PUF imperfections taken into account?

- Noisiness
- Prone to modeling


Are there PUF assumptions degrading the usability / generality ?


09/17

Efficiency & Scalability

PUF noisiness taken into account?

Error Tolerance

Exhaustive search for error pattern by server. They assume noise < 1%. Might not be feasible for high noise. No FPGA Proof-of-concept.

Secure Lightweight Entity Authenticat Mission Impossible

Prevention of PUF modeling attacks?

Crypto (Hash)

Controlled

Reverse fuzzy extractor

Converse

Our reference protocol

Guarantee

Lightweight Protection

Öztűrk et al.

Hammouri et al.

Slender

PUF needs high resistance

No protection

Basic

Reconfiguration

Not usable, no secure instantiation

PUF advantages w.r.t. NVM preserved? Denial-Of-Service?

<u>No NVM</u>

Basic Controlled

Reverse fuzzy extractor

Hammouri et al.

Slender

Converse

Our reference protocol

Write-Secure Reprogrammable NVM Reconfiguration

Reprogrammable NVM Oztűrk et al.

Read/Write-Secure

12/17

Undermines the advantages of PUF technology: low-cost manufacturing & physical security.

NVM = state vector (requires synchronization between PUF-IC and server). No user authentication for state update. Attacker can do it too: DoS. PUF output expansion exploits?

We did not spot a problem

Basic Hammouri et al.

Controlled Reconfiguration

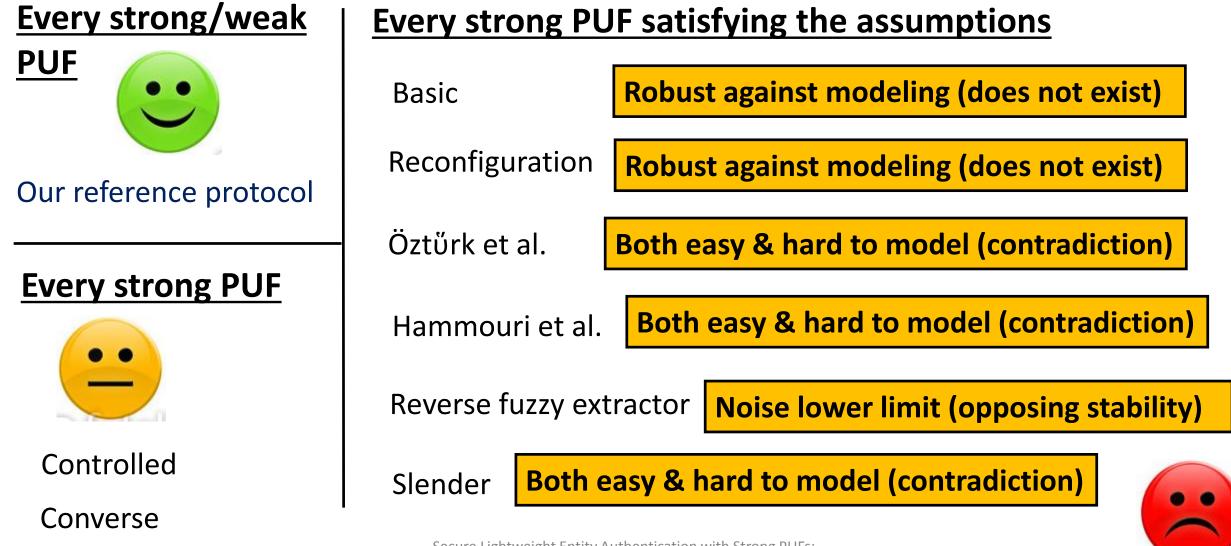
Öztűrk et al.

Not applicable (weak PUF)

Our reference protocol

Reverse fuzzy extractor

Slender


PRNG = LFSR XOR LFSR

Secure Lightweight Entity Authentication with Strong PUFs: Mission Impossible?

PUF assumptions degrading the generality?

14/17

Efficiency / Scalability (server storage)?

Constant w.r.t. # authentications

Our reference protocol

Öztűrk et al.

Hammouri et al.

Reverse fuzzy extractor

Slender

Linear w.r.t. # authentications

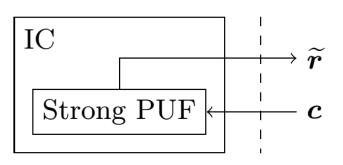
Basic

Controlled

Reconfiguration

Special category

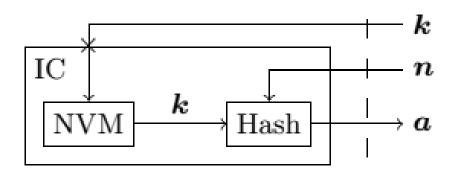
15/17

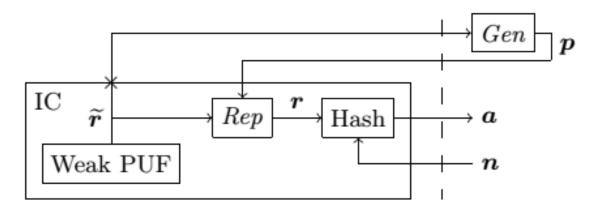

Converse

Server and attacker face the same brute-force workload. Not usable.

													16/17
Comparison		Ŀ.	UFI				àce	44	th.				
			2,20	Ċ,			r^{terf}	$a_{a_{ll}}$	r au	s s	ľ		
		Weak PUF	MAN	$G_{e_n}^{I,R_N}$	$R_{ep}^{2.6}$	H_{ash}	O_{th_e}	Tokei Ser	$\overset{oerv}{*}_{A_{I}}$	CBD	$K_{ey}^{Mod_\ell}$	٢	
- Resources	Reference I								∞				
 Authenticity Type 	Reference II	√ ×	\times	× ×	\checkmark	< <	\times	√ ×	∞	×	× 🗸		
 Server storage 	Naive	× ✓	X	× ×	×	× ×	\times	✓ ×	d	\checkmark	× ×		
	Controlled	× ✓	\times	× ×	\checkmark	\checkmark \checkmark	\times	✓ ×	d	\checkmark	× ×		
	Öztürk et al.												
	Hammouri et al.						I						
	Reconfiguration						I						
	Reverse FE						I						
	Slender	$\times \checkmark^5$	\times ,	 × 	\times	$\times \checkmark$	\checkmark	✓ ×	∞	×	$\checkmark \times$		
	Converse	× 🗸	\times .	\checkmark ×									
	¹ Including response expansion.					⁴ Non-determinism lower bound.							
					⁵ Both easy- and hard-to-model								
	modeling.				⁶ Reprogrammable.								

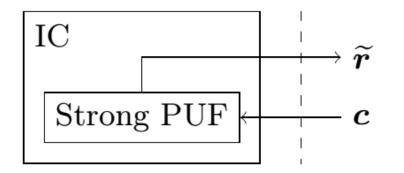
Conclusion


- Secure Lightweight Entity Authentication with Strong PUFs: Mission Impossible?
- PUFs seem too brittle to be used without additional crypto (hash, ...).
- PUF only one component in security architecture: still need TRNG, ...
- Breakthrough: strong PUF with strong cryptographic properties (no machine learning)
 Not so very optimistic

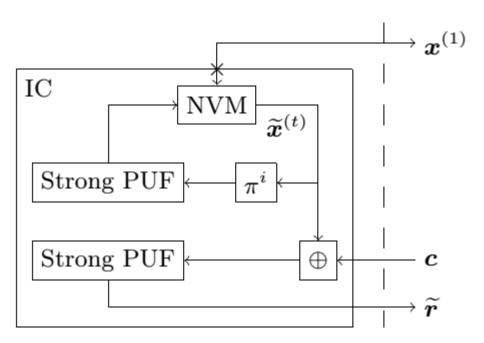

- Decade of research: no success. History of Machine Learning Attacks
- Infinity of output bits with limited number of circuit elements
- Most promising ideas (e.g. optics) are not lightweight
- Unavoidable trade-offs: security vs noise
- Coming soon: extended version on IACR Eprint (including 3 more protocols)

Thank you! Questions?

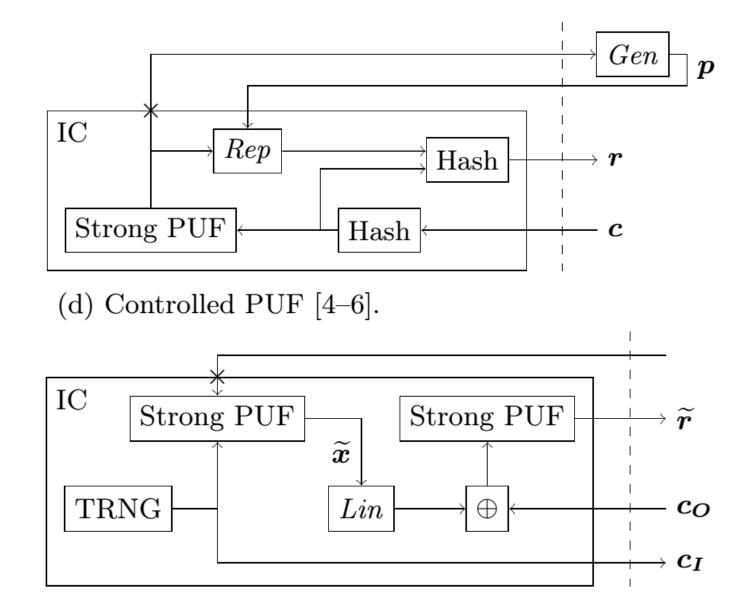
Appendix – Protocol Figures

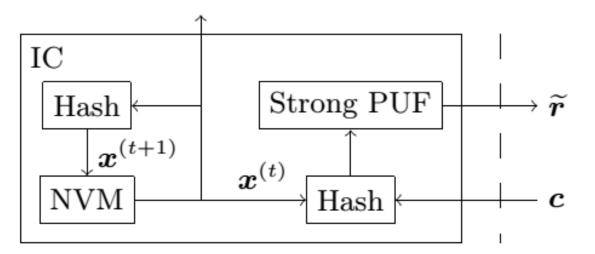


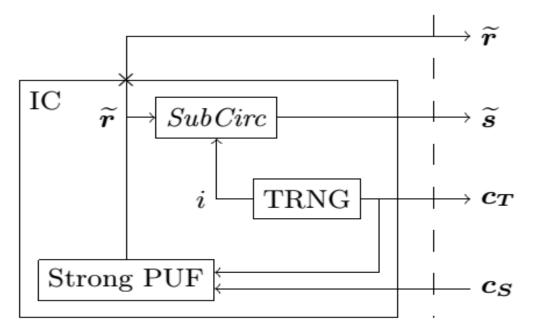
(a) Reference I: key in NVM.

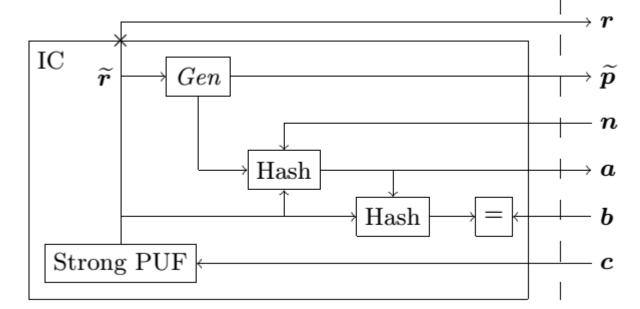


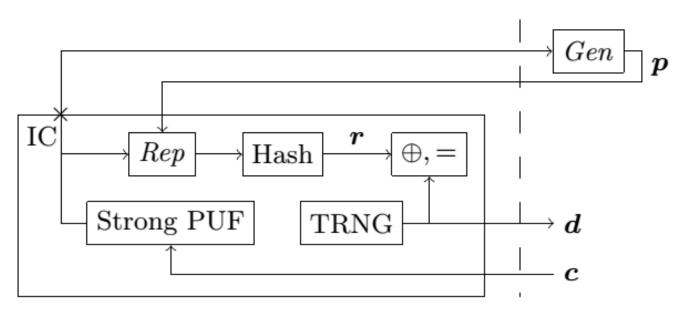
.


(b) Reference II: key via PUF and FE.


(c) Naive strong PUF [18].


(e) Öztürk et al [17].


(f) Hammouri et al [8].


(g) Logically reconfigurable PUF [11].

(i) Slender PUF [16].

(h) Reverse FE [24].

(j) Converse [12].