Accelerating BLISS: the geometry of random binary polynomials

Léo Ducas

University of California, San Diego

CHES'14, Rump Session

$\operatorname{BLISS:}$ a Lattice Based Signature Scheme

Comparison in Software (Our prototype¹ vs. oppenssl).

Scheme	Sign (ms)	Sign/s	Ver (ms)	Ver/s
BLISS-I	0.124	8k	0.030	33k
RSA 4096	8.660	0.1k	0.138	7.5k
ECDSA 256	0.106	9.5k	0.384	2.5k

 $\rm BLISS$ already competes with standards, on Software [DDLL13] and on Hardware [PDG14].

Can we make it even faster ?

BLISS [DDLL13] rejection rate

To avoid leakage BLISS repeats its main loop M times,

$$M = \exp\left(B^2/2\sigma^2\right)$$

where $\|\mathbf{S} \cdot \mathbf{c}\|_2 \leq B$ for any secret $\mathbf{S} \in S$ and any challenge $\mathbf{c} \in C$.

BLISS	0	I	II		IV
Security	Тоу	128 bits	128 bits	160 bits	192 bits
Optimized for	Fun	Speed	Size	Sec.	Sec.
n	256	512	512	512	512
Repetition rate	7.4	1.6	7.4	2.8	5.2

Improving the bound B (with a proof !) immediately speeds up the scheme.

Geometry of polynomials

For binary random $\mathbf{S} \in \mathbb{Z}^{n \times n}$ and $\mathbf{c} \in \mathbb{Z}^n$ we have:

$$\|\mathbf{S}\cdot\mathbf{c}\|_2\leqslant B=n\cdot(1+o(1))$$

but for random binary **polynomials** $s, c \in \mathbb{Z}[X]/(X^n + 1)$ it is worse:

$$\|\mathbf{s} \cdot \mathbf{c}\|_2 \leqslant B = \mathbf{n} \cdot \omega \left(\sqrt{\log n}\right) \quad (\approx 6n)$$

Rejecting some secrets $s \in S$, [DDLL13] reached:

$$\|s \cdot c\|_2 \leq 1.6n.$$

Experiments suggest that this bounds it isn't tight.

To improve on that bound, we can also reject some challenges, but this rejection needs to be **independent of the secret key**.

We carefully craft subsets $\mathcal{S}' \subset \mathcal{S}$, $\mathcal{C}' \subset \mathcal{C}$ and prove:

 $\|s \cdot c\|_2 \leq 1.2n$ for all $s \in S', c \in C'$.

General Idea

 \hat{x} denote FFT(x). We set $\mathcal{S}' = \mathcal{C}' = \{x/\text{Sort}(|\hat{x}|) \leq \text{Profile}\}.$

 $\mathsf{FFT}(\mathsf{secret})$: $|\hat{\mathbf{s}}| \times \mathsf{FFT}(\mathsf{challenge})$: $|\hat{\mathbf{c}}| \leq$

Result

Improved speed up to a factor 2.5.

BLISS-F	0	I	II		IV
Security	Тоу	128 bits	128 bits	160 bits	192 bits
Optimized for	Fun	Speed	Size	Sec.	Sec.
speed-up	2.2	1.2	2.4	1.6	2.5

To appear soon on eprint. With **Open Source** implementation.

Thanks !