
Accelerating Bliss:
the geometry of random binary polynomials

Léo Ducas

University of California, San Diego

CHES’14, Rump Session

1 / 7

Bliss: a Lattice Based Signature Scheme

Comparison in Software (Our prototype1 vs. oppenssl).
Scheme Sign (ms) Sign/s Ver (ms) Ver/s

BLISS-I 0.124 8k 0.030 33k

RSA 4096 8.660 0.1k 0.138 7.5k

ECDSA 256 0.106 9.5k 0.384 2.5k

Bliss already competes with standards, on Software [DDLL13]
and on Hardware [PDG14].

Can we make it even faster ?

1Not fully optimized (e.g. no use of SSE vectorialization)
2 / 7

Bliss [DDLL13] rejection rate

To avoid leakage Bliss repeats its main loop M times,

M = exp
(
B2/2σ2

)
where ‖S · c‖2 6 B for any secret S ∈ S and any challenge c ∈ C.

Bliss 0 I II III IV

Security Toy 128 bits 128 bits 160 bits 192 bits
Optimized for Fun Speed Size Sec. Sec.

n 256 512 512 512 512
Repetition rate 7.4 1.6 7.4 2.8 5.2

Improving the bound B (with a proof !) immediately speeds up the
scheme.

3 / 7

Geometry of polynomials

For binary random S ∈ Zn×n and c ∈ Zn we have:

‖S · c‖2 6 B = n · (1 + o(1))

but for random binary polynomials s, c ∈ Z[X]/(X n + 1) it is
worse:

‖s · c‖2 6 B = n · ω
(√

log n
)

(≈ 6n)

Rejecting some secrets s ∈ S, [DDLL13] reached:

‖s · c‖2 6 1.6n.

Experiments suggest that this bounds it isn’t tight.

4 / 7

Rejecting Challenge

To improve on that bound, we can also reject some challenges, but
this rejection needs to be independent of the secret key.

We carefully craft subsets S ′ ⊂ S, C′ ⊂ C and prove:

‖s · c‖2 6 1.2n for all s ∈ S ′, c ∈ C ′.

5 / 7

General Idea
x̂ denote FFT (x). We set S ′ = C′ = {x/Sort(|x̂ |) 6 Profile}.

FFT(secret) : |ŝ| × FFT(challenge) : |ĉ | 6

Sort(|ŝ|) × Sort(|ĉ |) 6

Profile × Profile 6 1.2n

6 / 7

Result

Improved speed up to a factor 2.5.

Bliss-f 0 I II III IV

Security Toy 128 bits 128 bits 160 bits 192 bits
Optimized for Fun Speed Size Sec. Sec.
speed-up 2.2 1.2 2.4 1.6 2.5

To appear soon on eprint. With Open Source implementation.

Thanks !

7 / 7

