

Secure Systems Lab Vienna Vienna University of Technology

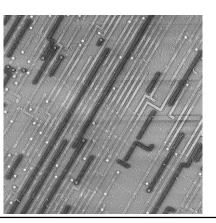
Efficient High-Speed WPA2 Brute Force Attacks using Scalable Low-Cost FPGA Clustering

Markus Kammerstetter, Markus Muellner, Daniel Burian², Christian Kudera and Wolfgang Kastner

Secure Systems Lab Vienna, Automation Systems Group, Vienna University of Technology

Trustworks KG²

AUTOMA



Secure Systems Lab Vienna Vienna University of Technology

- Focus on Hardware Security and Physical Attacks
- Lab equipment Trustworks KG
- Wide range of dedicated tools such as FIB, SEM, Plasma Etcher, Prober, Polisher, etc.

Our Research Fields

Secure Systems Lab Vienna Vienna University of Technology

Embedded Software Security

Firmware Code Analysis

- Static Anaylsis
- Dynamic Analysis & Debugging Firmware Fuzz Testing

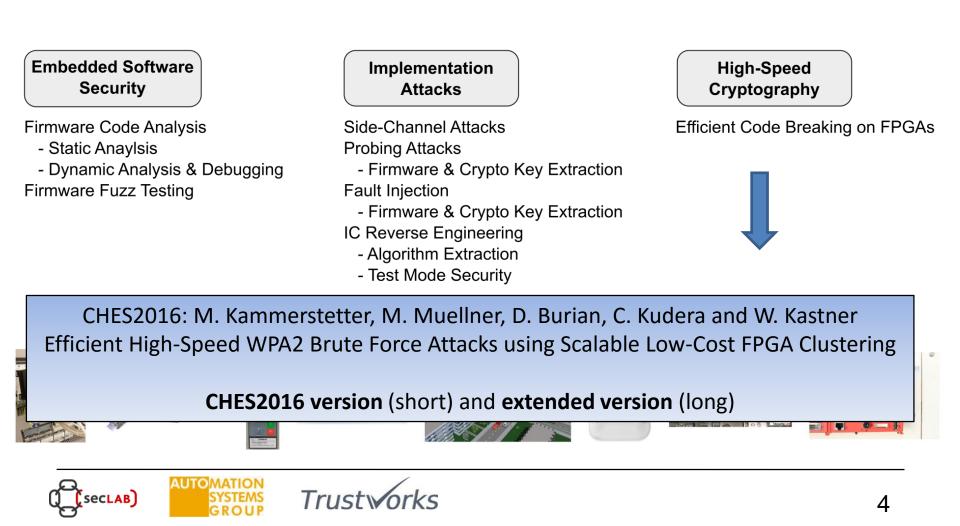
Implementation Attacks

Side-Channel Attacks Probing Attacks

- Firmware & Crypto Key Extraction

Fault Injection

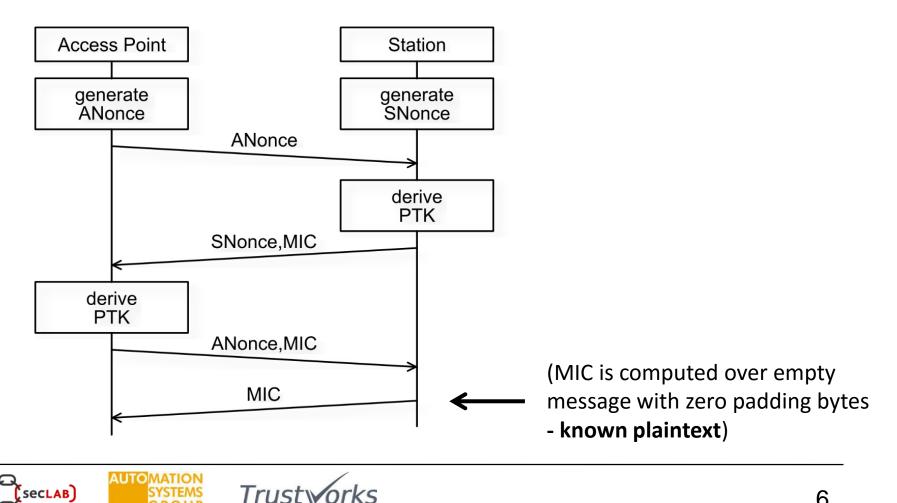
- Firmware & Crypto Key Extraction
- IC Reverse Engineering
 - Algorithm Extraction
 - Test Mode Security

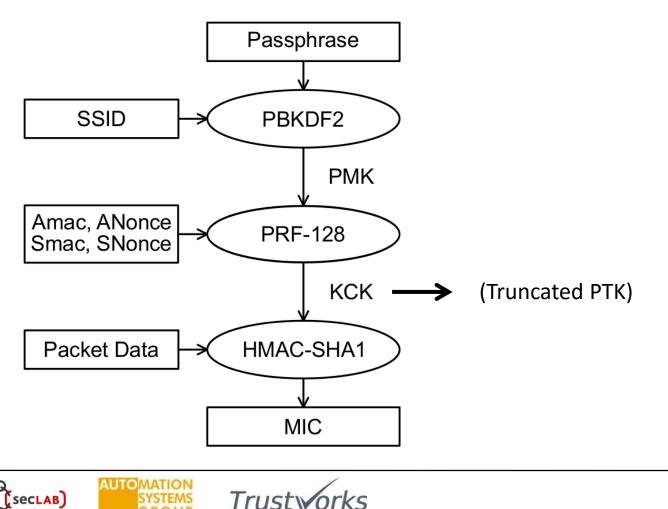

Efficient Code Breaking on FPGAs

Trustvorks

Our Research Fields

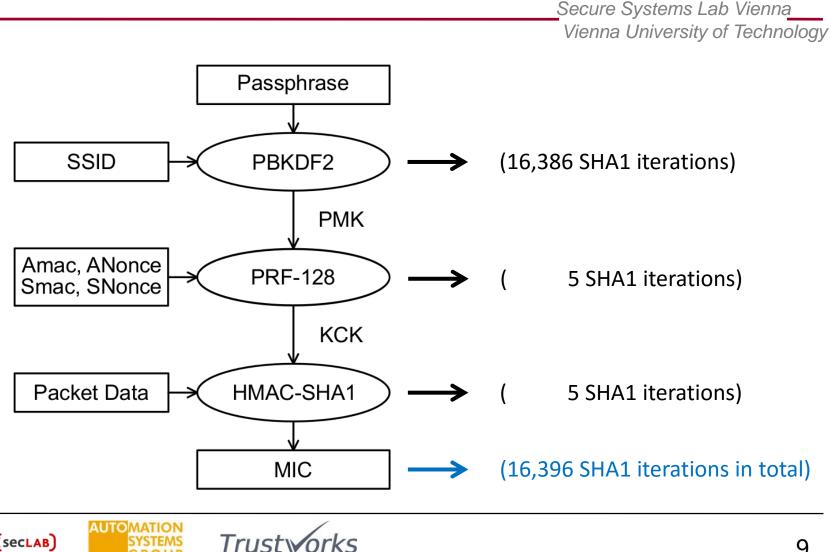
Problem Statement


- WPA2-Personal is omnipresent
- Minimum password length: 8 characters
- Embedded devices (routers, cable modems, ...) frequently have bad default passwords
- Quality of password vs. cracking speed

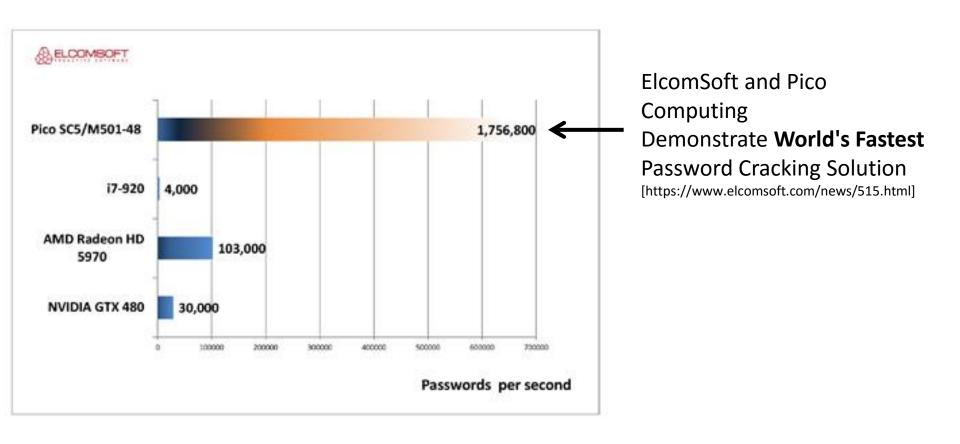


WPA2-Personal 4-Way Handshake

WPA2-Personal Key Derivation


Practical Attacks on Handshake

- Attacker captures 4-way handshake (use of de-auth frames possible)
- 2. Choose password
- 3. Derive KCK (=truncated PTK) using password candidate and obtained SSID, MAC addresses and nonces
- 4. Password correct if computed MIC matches captured MIC



Computational Complexity

How fast can we get ?

Throwing Money at the Problem

Secure Systems Lab Vienna Vienna University of Technology

* Price request per e-mail to PicoComputing, April 22, 2015

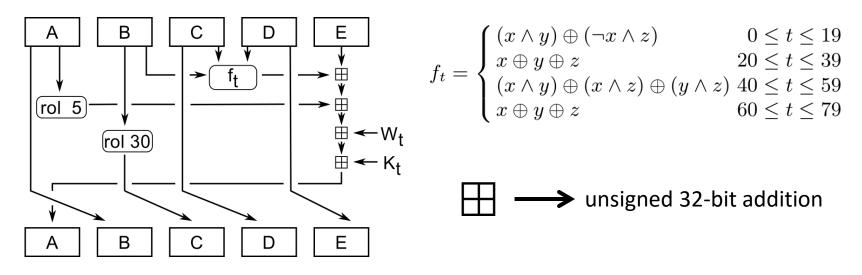
AUTOMATION

Can we do better ?

Secure Systems Lab Vienna Vienna University of Technology

- SHA1 works on 512 bit chunks, 160 bit hash digest when finished
- 80 rounds (t)
- Message working schedule:

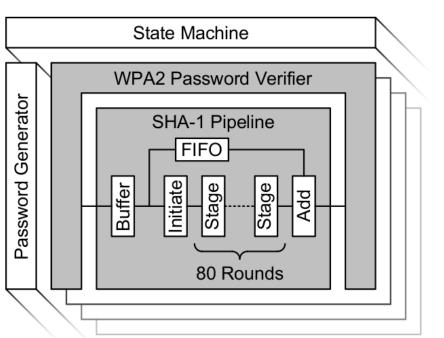
(Message broken up into 32bit chunks) $W_t = \begin{cases} M_t & 0 \le t \le 15\\ rol(W_{t-3} \oplus W_{t-8} \oplus W_{t-14} \oplus W_{t-16}, 1) & 16 \le t \le 79 \end{cases}$



Can we do better ?

Secure Systems Lab Vienna Vienna University of Technology

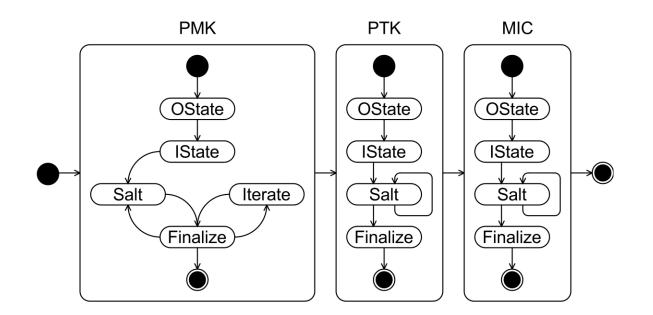
• SHA1 rounds are based on compression:


 Ideally suited for HW implementation, but addition is expensive (carry chain)

FPGA Design

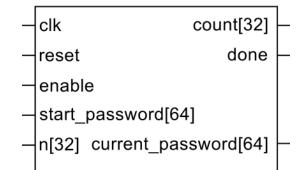
Secure Systems Lab Vienna Vienna University of Technology

- Efficient SHA1 pipeline
- Goal: critical path delay reduction
- 83 stages (vs. 80 rounds)
- 3 additional stages:
 - *Buffer* stage (reduce pipeline input logic delay)
 - Initiate and Add stage splits up expensive addition of E word (carry chain delay)


SHA1 Pipeline Optimizations

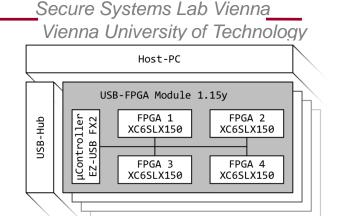
- Compute HMAC O-state first (avoid storing intermediary result)
- Use of Block RAM delay lines instead of broad stage interconnects (avoid routing delays/congestion)
- State machine: many small multiplexers instead of a single big one
- Custom build parameters (e.g. for shift reg. inference)
- Extensive floor planning (explained later)

Key Derivation State Machine



Password Verifier

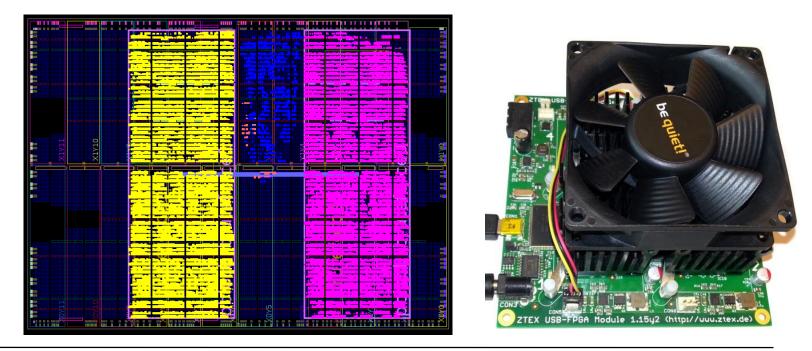
- Password generator realized as fast counter
- Verifier fills up all 83 stages of all cores


- Wait until computed MICs are available
- Compare computed MICs with captured MIC

Implementations

- Focus on low-cost FPGAs
- Implementations for 3 different FPGAs:

- Spartan 6 LX150T on Ztex 1.15y boards
- Artix 7 200T on Ztex 2.16 board
- Kintex 410T (for comparison purposes)


AUTO

Spartan 6 LX 150T

Secure Systems Lab Vienna Vienna University of Technology

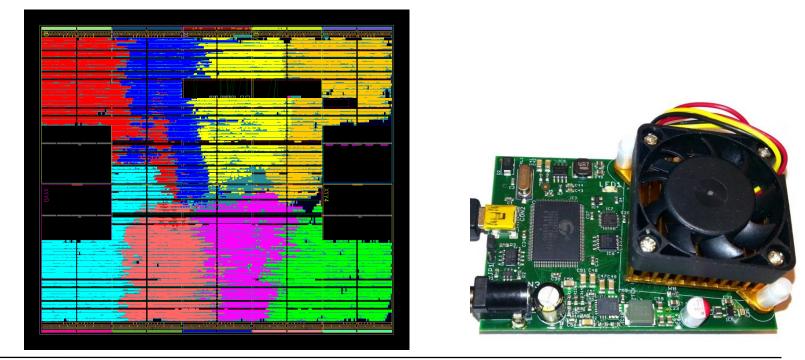
• 2 Cores @ 180 MHz, dyn. frequency scaling based on error rate, 4 FPGAs per board

AUTOMATION **Trust** *orks*

Spartan 6 LX160T Cluster

Secure Systems Lab Vienna Vienna University of Technology

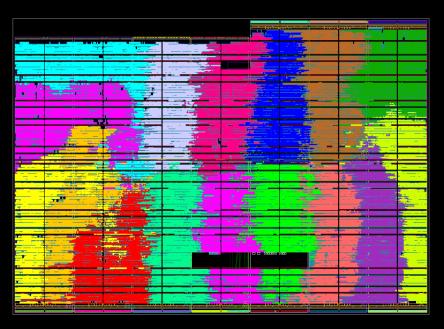
- 9 Ztex 1.15y boards, 4 FPGAs each (=36 FPGAs)
- 7 boards internal
- 2 boards external (development support)


AUTO

Artix 7 200T

Secure Systems Lab Vienna Vienna University of Technology

8 Cores @ 180 MHz, dyn. Frequency scaling based on temperature, star topology



Trust *orks*

Kintex 410T

Secure Systems Lab Vienna Vienna University of Technology

16 Cores @ 216 MHz, dyn. Frequency scaling based on temperature, star topolgy, simulations only

AUTOMA

Performance & Power Consumption

Secure Systems Lab Vienna Vienna University of Technology

Measured performance is close to calculated performance

									•		
System	FPGAs	Type	Cost	Cores	Tool W	Tool MHz	Meas. W	Act. MHz	calc pwd/s	pwd/s	pwd/s W
Ztex 1.15y	1	XC6SLX150T-3	175	2	4.281	187	6.99*	180	21,956	$21,\!871$	3,128*
Ztex 1.15y	4	XC6SLX150T-3	700	8	17.124	187	27.96	180	87,826	$87,\!461$	$3,\!128$
9x Ztex 1.15y	36	XC6SLX150T-3	$2,\!400$	72	154.116	187	254	180	790,436	$741,\!200$	2,918
Ztex 2.16	1	XC7A200T-2	213	8	10.458	180	11.04	180	87,826	87,737	7,947
N/A	1	XC7K410T-3	$2,\!248$	16	25.634	216	N/A	N/A	210,783	N/A	N/A
N/A	48	XC7K410T-3	$107,\!904$	768	$1,\!230.432$	216	N/A	N/A	$10,\!117,\!584$	N/A	N/A

New speed record:

Δυτο

Compared to ElcomSoft's 1,988,360 keys/sec,

that's 5.09x times as fast <u>on the same hardware</u>

Trust

GPU Comparison

Secure Systems Lab Vienna Vienna University of Technology

- Based on cudaHashcat v1.36
- GeForce GPUs in our lab machines
- GRID K250 GPUs on Amazon EC2 cloud

System	pwd/s	W	pwd/s W
GeForce GTX750 Ti	52,446	106	495
GeForce GTX770 OC	$62,\!420$	184	339
Amazon EC2 - GRID K520	30,370	N/A	N/A
Amazon EC2 - GRID K520 x4	109,073	N/A	N/A

AUTC

Real World Case Study [extended version]

Secure Systems Lab Vienna Vienna University of Technology

 UPC cable modems have weak default PW (8 characters, uppercase, [A..Z])

 Assumption: If people change the password, it is likely that they also change the tedious SSIDs (i.e. UPC012345) to something meaningful

Real World Case Study [extended version]

- So we collected some handshakes ... (own cable modems)
- Result: With our cluster (790,436 keys/sec) we can break the password in 3 days at most !
- ... but what's the real world impact ?

Impact [extended version]

- We used to Wigle war-driving WiFi dataset to identify UPC<n> networks (dataset coverage ?)
- We found 120,380 networks in the city of Vienna alone
- 166,988 networks in Austria including the border region
- We could break into each of them within
 3 days at most

Impact [extended version]

AUTOMATION

Trust vorks

Secure Systems Lab Vienna Vienna University of Technology

 Density: Austria + Border region

 Density: City of Vienna

28

Conclusion

- New implementation speed record
- Professional grade bruteforce speeds are now in the reach of amateurs (e.g. old Bitcoin mining FPGA boards) at a fraction of the cost
- FPGAs are ideally suited for WPA2 cracking
- Real-world networks with weak default passwords can now be broken into within just a few days

Future Work

Secure Systems Lab Vienna Vienna University of Technology

- Support password lists
- Artix 7 Low-cost cluster
- Evaluation of our implementation on COPACABANA ?

AUTO

Secure Systems Lab Vienna Vienna University of Technology

- Thank you for your attention
- More information: read the paper, we recommend the extended version (arXiv:1605.07819v1)
- Contact: Markus Kammerstetter <mk _at_ seclab.tuwien.ac.at>

• Questions ?

