
Microarchitectural Side-Channel
Attacks

Yuval Yarom

The University of Adelaide and Data61

1

Publications on microarchitectural
timing attacks

Data from [GYCH16]
2

Publications and Global Temperature

3

Global Average Temperatures Vs.
Number of Pirates

4
Image from :http://sparrowism.soc.srcf.net/home/pirates.html

Pirates and publications on
microarchitectural timing attacks

5Pirate image By J.J. at the English language Wikipedia,
CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=665628

Still considered hard

• OpenSSL
LOW Severity. This includes issues such as those that … or
hard to exploit timing (side channel) attacks.

https://www.openssl.org/policies/secpolicy.html

• At the same time

– Publications are terse – technical details are often
omitted

– Generic tools do not exist

6

Still considered hard

• OpenSSL
LOW Severity. This includes issues such as those that … or
hard to exploit timing (side channel) attacks.

https://www.openssl.org/policies/secpolicy.html

• Attacks are easy, but at the same time

– Publications are terse – technical details are often
omitted

– Generic tools do not exist

7

Motivation

• Reduce barriers to entry

• Why?

– Offensive research

• A potential leak is nice. An exploit is better

– Cipher development

• Know your enemy

• How?

– Education – this tutorial

– Tools – Mastik

8

Mastik

• Extremely bad acronym for
Micro-Architectural Side-channel ToolKit

• Aims

– Collate information on SC attacks

• Improve our understanding of the domain

• Provide somewhat-robust implementations of all
known SC attack techniques for every architecture

• Implementation of generic analysis techniques

– Overcome the barrier to entry into the area

– Shift focus to cryptanalysis
9

Mastik - Status

• Reasonably solid implementation of four
attacks

– Prime+Probe on L1-D, L1-I and L3, Flush+Reload

• Only Intel x86-64, on Linux and Mac

– x86-32 and limited ARM currently working in the
lab

• Zero documentation, little testing

• No user feedback

10

Outline

• Background on and a taxonomy of
microarchitectural side-channel attacks

• The Flush+Reload attack and variants

• The Prime+Probe attack

• Countermeasures

• Slides and sources available at
http://cs.adelaide.edu.au/~yval/CHES16/

11

http://cs.adelaide.edu.au/~yval/CHES16/

The Microarchitecture

• An (Instruction Set) Architecture (ISA) can have
multiple implementations

– A microarchitecture is one such implementation

– The ISA abstracts the implementation detail

• The microarchitecture is functionally
transparent

– But contains hidden state that can be observed
through program execution timing

12

Core

Memory

Controller

L3

Package

L1 TLB

L2

IN
T

+
F

P

IN
T

BTB

Core

L1 TLB

L2

IN
T

+
F

P

IN
T

BTB

Core

L3

Package

Memory

Controller

L1 TLB

L2

IN
T

+
F

P

IN
T

BTB

Core

L1 TLB

L2

IN
T

+
F

P

IN
T

BTB

Core

Memory

Controller

L3

Package

L1 TLB

L2

IN
T

+
F

P

IN
T

BTB

Core

L1 TLB

L2

IN
T

+
F

P

IN
T

BTB

Core

L3

Package

Memory

Controller

L1 TLB

L2

IN
T

+
F

P

IN
T

BTB

Core

L1 TLB

L2

IN
T

+
F

P

IN
T

BTB

Interconnect

The Microarchitecture

ISA
Software

Hardware

Image adapted from [GYCH16]
13

The Microarchitecture

• An (Instruction Set) Architecture (ISA) can have
multiple implementations

– A microarchitecture is one such implementation

– The ISA abstracts the implementation detail

• The microarchitecture is functionally
transparent

• But contains hidden state that can be
observed through program execution timing

14

Microarchitectural attacks

• Create contention on microarchitectural
components

• Which results in timing variations

• That are used to expose an intarnal state

• Which depends on secret data

• Allowing the attacker to infer said data

15

Core

Memory

Controller

L3

Package

L1 TLB

L2

IN
T

+
F

P

IN
T

BTB

Core

L1 TLB

L2

IN
T

+
F

P

IN
T

BTB

Core

L3

Package

Memory

Controller

L1 TLB

L2

IN
T

+
F

P

IN
T

BTB

Core

L1 TLB

L2

IN
T

+
F

P

IN
T

BTB

Core

Memory

Controller

L3

Package

L1 TLB

L2

IN
T

+
F

P

IN
T

BTB

Core

L1 TLB

L2

IN
T

+
F

P

IN
T

BTB

Core

L3

Package

Memory

Controller

L1 TLB

L2

IN
T

+
F

P

IN
T

BTB

Core

L1 TLB

L2

IN
T

+
F

P

IN
T

BTB

Interconnect

Attack taxonomy - level

ISA
Software

Hardware

Core shared

Package shared

System shared

16

Image adapted from [GYCH16]

Attack taxonomy – type [AS07]

• Persistent-state attacks

– Spatial contention on limited storage space

– Example: most cache attacks

• Transient-state attacks

– Temporal contention on limited processing speed

– Example: CacheBleed

17

Basic taxonomy

• We focus on persistent-state at the package
level (with some core)

Persistent-state Transient-state

Core level [Ber05,Per05,
OST06] Others

[Lam73,Ber05,
AS07,YGH16]

Package [YF14,LYG+15,IES15] ?

System [PGM+16,IES16] [WS12,WXW12]

18

Other classifications

• Classical taxonomy [Pag03], [NS06]
– Time-driven – measure complete execution time

– Trace-driven – capture sequence of cache hits/misses

– Access-driven – obtain some information on accessed
memory addresses

• Internal vs. external contention [AK09]

• Degree of concurrency [GYCH16]
– Multicore

– Hyperthreading

– Time slicing

19

The (X86) Cache

• Memory is slower than the
processor

• The cache utilises locality
to bridge the gap
– Divides memory into lines

– Stores recently used lines

• Shared caches improve
performance for multi-core
processors

Processor

Memory

Cache

22

Cache Consistency

• Memory and cache can be
in inconsistent states

– Rare, but possible

• Solution: Flushing the
cache contents

– Ensures that the next load is
served from the memory

Processor

Memory

Cache

23

The FLUSH+RELOAD Technique

• Exploits cache behaviour to leak information
on victim access to shared memory.

• Spy monitors victim’s access to shared code

– Spy can determine what victim does

– Spy can infer the data the victim operates on

24

Detour - Virtual Memory

• Processes execute within a virtual address
space

– Virtual pages map to physical frames

25

Sharing

• Frames can be shared by multiple processes

– Read only sharing maintains functional isolation

– Protection using Copy-on-write

26

Causes of sharing

• Content-aware sharing

– Pages from the same file have identical content

– Shared program or library code

• Can also share constant data

– Shared images in PaaS clouds

• Content-based sharing (a.k.a. page deduplication)

– The system identifies and coalesces identical pages

– Implemented in many hypervisors and in most
modern operating systems

27

FLUSH+RELOAD [GBK11,YF14]

• FLUSH memory line

• Wait a bit

• Measure time to RELOAD

line

– slow-> no access

– fast-> access

• Repeat

Processor

Memory

Cache

28

Flush+Reload code

mfence

rdtscp

mov %eax, %esi

mov (%ebx), %eax

rdtscp

sub %esi, %eax

clflush 0(%ebx)

• Also need:
– Wait
– Data collection
– Noise handling
– Initial parsing

29

Demo

• FR-1-file-access

• FR-2-file-access

• FR-threshold

30

Finding code

• Use nm, gdb, objdump, etc.

– Demo scripts functiondump.sh and
debuginfo.sh

• Remember the base address

31

Demo

• FR-function-call

32

A closer look at F+R

Time

flush wait wait wait wait Reload flush wait wait wait wait Reload flush wait wait wait

33

A closer look at F+R

Time

flush wait wait wait wait Reload flush wait wait wait wait flush wait wait waitSpy

Victim working workingworking working access

34

Timing matters

Time

flush wait wait wait wait Reload flush wait wait wait wait flush wait wait waitSpy

Victim working workingworking working access

Reload

Access missed due to
temporal overlap 35

Demo

• FR-function-call-nodelay

36

Probability of a probe miss [ABF+15]

• Ratio of wait time to slot length

37

Handling misses

• Probe function calls [YB14]

– A cache line containing a function call is accessed
once before the call and once on return

• Except, maybe, when the return address is in the next
cache line

– The timings of the two accesses are not
independent

• Probe loops [YF14]

38

GnuPG 1.4.13 Modular Exponentiation

x⟵1

for i⟵|e|-1 downto 0 do

x⟵x2 mod n

if (ei =1) then

x = xb mod n

endif

done

return x

39

Example:
115 mod 100 =

161,051 mod 100 = 51

Operation res i ei

1 2 101

Square 1 2 101

reduce 1 2 101

Multiply 11 2 101

reduce 11 2 101

Square 121 1 101

reduce 21 1 101

Square 441 0 101

reduce 41 0 101

Multiply 451 0 101

reduce 51 0 101

The secret
exponent is
encoded in

the sequence
of operations

!!!

Demo

• FR-gnupg-1.4.13

40

F+R Spatial Resolution

• Cache line
– Can't have two different probes on the same cache line

• Cache line pairs
– Probes on paired lines interfere with each other –Don't

• Streaming
– Use "random" order when probing multiple lines in the

same page

– Don't probe too many of those

• Speculative execution
– Probe rear end of functions

41

Improving temporal resolution

• Scheduler trick [GBK11]

– Monitoring each and every memory access

– Requires hyperthreadings

– Uses hundreds of threads

• Amplification [ABF+15]

– Flushing commonly used cache lines slows the
victim

42

Demo

• FR-flush

43

Flush+Reload Summary

• Simple attack

– Even without Mastik

• High temporal resolution

– Up to sub-micro-second

• High accuracy

– Few false positives

• Increases as a function of spatial granularity

– A bit more false negatives

• Particularly when exploiting the high temporal resolution

44

Variants

• Evict+Reload [GSM15]
– Uses cache contention instead of clflush

• Flush+Flush [GMWM16]
– Measures variations in clflush timing between

cached and non-cached data
– Improved temporal and spatial resolution
– Increased error rate

• Invalidate+Transfer [IES16]
– Use Flush+Reload on Intel or Evict+Reload on ARM to

implement a cross-package attack

• Flush+Reload on ARM [ZXZ16]
– ???

45

