Obvious in Hindsight:

From Side Channel Attacks to the Security Challenges Ahead

Invited talk at CHES 2016 & CRYPTO 2016

Paul Kocher

President & Chief Scientist Cryptography Research Division of Rambus

August 17, 2016

- Scaling favors crypto strength (DES \rightarrow 3DES: ~3X work = ~2⁵⁶X strength)
- Algorithms have now won, if we don't over-optimize
 - Prediction: No practical cryptanalysis of triple AES-256 ever

... but security obviously isn't going well ... incl. crypto

#

bitcoin

ethereum

- Inputs.io (2013: ~\$1M)
- BIPS (2013: ~\$1M)
- Mt. Gox (2014: ~\$350M)
- Bitpay (2014: ~\$2M)
- Flexcoin (2015, ~\$650K)
- bitstamp (2015 ~\$5M)
- BTER (2015: ~\$2M)
- Cryptsy (2016: ~\$6M)
- Bitfinex (2016: ~\$60M)
- Gatecoin 2016 ~\$2M
- Ethereum DAO (2016: ~\$50M)
- (and more...)

https://magoo.github.io/Blockchain-Graveyard/

In the middle ages...

"Physicians tended to be academics, working in universities, and mostly dealt with patients as an observer or a consultant. They considered surgery to be beneath them." [1]

... so surgery was done by barbers

[1] https://en.wikipedia.org/wiki/Barber_surgeon

Our 'barber surgeon' era

- Practice yields many bad outcomes (and a few very good)
- Research too divorced from practice
 - Theory struggles with messy reality
 - Theory isn't applicable
 - Practice ignores theory
- Dire needs: Practice goes on

Practice

Crypto Theory

"Laparoscopic

cosmetic surgery

space aliens"

for silicon-based

Barbers doing surgery <-> pre-vet students doing crypto?

- Presentation @ Stanford on Differential & Linear Cryptanalysis
 - Tried improving failed
 - Frustratingly weak correlations

 Knew timing was non-constant from profiling my own code
 MUL, caches, branches...

MUL	8-bit Reg	70 – 77	2
	16-bit Reg	118 - 133	2
	8-bit Mem	(76 - 83) + EA	2-4
	16-bit Mem	(124 - 139) + EA	2-4
IMUL	8-bit Reg	80-98	2
	16-bit Reg	128 - 154	2
	8-bit Mem	(86 - 104) + EA	2-4
	16-bit Mem	(134 - 160) + EA	2-4
DIV	8-bit Reg	80 - 90	2
	16-bit Reg	144 - 162	2
	8-bit Mem	(86 - 96) + EA	2-4
	16-bit Mem	(150 - 168) + EA	2-4
IDIV	8-bit Reg	101 - 112	2
	16-bit Reg	165 - 184	2
	8-bit Mem	(107 - 118) + EA	2-4
	16-bit Mem	(171 - 190) + EA	2-4

7

Timing Attack Example

K_i = a small secret value (e.g. exponent bit...)

Given a set of inputs and their observed transaction times:

- Can estimate time for each run of Step x given Input and all $K_{i < x}$
 - Estimates will correlate to observed time if $K_{i \le x}$ correct and no correlation if $K_{i < x}$ is wrong
 - Identify correct K_i, then iterate to find key

Implications

- Yielded the strong correlations I wanted
 - Modest data needs implementable
 - More fun than linear & differential cryptanalysis ©
- Obvious in hindsight...
 - Tiny side channels can expose keys
 - Real implementations aren't black boxes
 - Optimizations make things worse
 - Disconnect between algorithm requirements & implementation
 - Incorrect (often unwritten) assumptions
 - Crypto > mathematics

Smart Card Projects

- Clients were deploying smart cards
 - Suspiciously bold security claims
 - ... but a "proper" testing lab required \$\$MM equipment

- Consistently bad: Time-memory trade-offs, weak MACs, unpadded RSA, key reuse...
- Vendors disputed vulnerabilities
 - Got a smart card reader & implemented
- Checked for timing issues
 - Consistently bad: RSA attacks, MAC & PIN verify timing leaks, undocumented backdoors
 - Also: timed resets to reset counters, EEPROM exhaustion, faults...

Power Analysis

- Wanted better data than timing
 - Bought the cheapest analog oscilloscope at Fry's electronics
 - Resistor from Radio Shack "Science Fair 60 in One Electronic Project Lab"
- Instant SPA results, e.g.:
 - RSA (squares vs. multiplies, CRT timing...)
 - DES (with branching in C/D shift really!)
 - At night only

Implementing DPA

- HP 54645 digital storage scope
 - 100MHz, 1MB memory (!) -- see one-time events
 - Josh Jaffe got data onto PC, visualization: SPA → DPA
- Major effort on countermeasures
 - Filed patents -- got too busy to submit to conferences
- Breaking everything tested...
 - Eventually an Australian reporter found out
 - Mooted 'responsible disclosure' question
 - Initial white paper, academic paper

In retrospect...

- Obvious in hindsight
 - Changes in electron movements affect power & EM
 - Measurements correlated to secret intermediates
 - Cryptanalysis can leverage tiny correlations
 - Example: can break a tiny block cipher circuit in a big, nosy ASIC
 - Strong algorithms are the beginning of crypto... not the end

"Obvious in hindsight" != useful

* Except for assigning blame 🕾

Why aren't problems obvious <u>beforehand</u>...?

Security & Fractals

Individual vulnerabilities are "obvious" – when we stare directly at minutiae

Overall risks are "obvious" too

– if we look broadly

15

Computing & Security Trends

More Targets

More Attacker Reward

More Vulnerabilities

6

Complexity swamps security

8 elements -> 28 interactions

- If defect density is constant <u>per element</u>,
 odds of zero flaws <u>squares</u> (20% → 4%)
- Reality is worse:
 - Defects reflect interactions: 4th power
 - Defect densities tend to increase

Silver Bridge on U.S. 35 in Ohio: Built 1924 Innovative optimization: High-strength steel 'eyebars' instead of cables

Collapsed in 1967, created awareness of "fracture critical components"

Image from model of bridge (credit: NIST)

How many "fracture-critical" elements are in a typical connected device?

- CPU
- Additional logic
- Bits of DRAM (non-ECC)
- Bits of flash/storage
- Software instructions
- ...

Not counting compilers, infrastructure...

~10 billion (10¹⁰) today...?

In 10 years \sim 1 trillion (10¹²)

Defenses have failed to scale to today's needs. IoT security is much harder

Product vendor security expertise

Secure product lifespan

User attention to security per device

User tolerance for security/reliability issues

Connected to physical world

Number of software platforms

On-device security tools

Vendors can afford monitoring & patching

Traditional

deep

5-10 years

high-ish

high

no

small

ubiquitous

yes

Future (IoT...)

limited

20-50+ years

low/none

low/none

yes

huge

usually none

no

What can we can do?

- 1. Focus on outcomes
- 2. Build better foundations

P(cryptanalysis) = small P(mistake) = huge

Everyone wants to narrow the gap

Two approaches...

Must think in <u>probabilities</u> – not certainties

- Proof!= 100% confidence (mistakes, relevance, assumptions...)
 - Danger: Wrong assumptions → False confidence
- Gaps scale exponentially (fixed 75% of flaws \rightarrow Gone in 2 doublings)

What P(desired outcome)?

History of massive over-confidence.

Our understanding of elements creates a false impression that we understand the complex system

What does crypto for fallible humans look like?

Goals = safety, assurance

10X safer > 10X faster: Can 'mere mortal' practitioners usually succeed

What are the metrics, requirements, trade-offs?

- Implementation risk (few LOC, no special cases, high test coverage...)?
- Safety margins (implementation redundancy, algorithm margins...)?
- Clarity (terminology, understandability to other stakeholders, bits'n' bytes...)?
- Precision (internal state, messages, computations, assumptions...)?
- Best practices (standards, 'building codes', APIs, guidelines...)
- Resilience (attack detectability, recoverability...)?

Culture of Safety: Aviation > Aerodynamics

Fatalities per 100M passenger miles for scheduled service; excl. "unlawful interference" and USSR

What can we can do?

- 1. Focus on outcomes
- 2. Build better foundations

Can we make foundations that can bear the security "pressure"?

Lowest layer = Crypto Algorithms

Well-understood – hopefully boring*

• Cipher
• Hash/MAC
• Sign/verify
• Key agreement
• Secret sharing/threshold

* Quantum resistance = not as boring as I'd like [...though no sign of qubit scaling]

Basic Crypto Algorithms

Protocols are well understood – in theory

- Real-world is messy
 - Interoperability between versions, implementations, algorithms (ECC curve proliferation is a mess)...
 - Export rules, regulations, standards process politics, "pride" algorithms...
 - Certificate syntax (X.509 is a mess), contents, parsing, revocation...
 - Performance optimizations for round trips, specific hardware capabilities
 - Certification authority economics & capabilities, manufacturing systems...
 - Denial of service, side channels, fault attacks, implementation complexity, attack surface area...
- 20+ years: Do we understand the SSL/TLS protocol family yet?

Protocols & Constructions
! Big progress

Basic Crypto Algorithms

✓ Solved

JAN 17, 2016 @ 11:01 AM 17,140 VIEWS

The \$2T Question

- Cyber Crime Costs Projected To Reach \$2 Trillion by 2019 How can we enable secure computations?
 - Pre-requisite for applications of crypto
 - Massive failures for even simple use cases (e.g. bitcoin wallets)

Compute Infrastructure **✗** Major needs **Protocols & Constructions** ! Big progress Basic Crypto Algorithms ✓ Solved

Compute – Miracle solutions?

Miracle primitives (fast FHE, obfuscation...)

Ţ

Still need secure compute + Lots more buggy code

Product is obsolete New bugs get added Miracle:
Artificial Intelligence that can find all bugs

Singularity?

Compute – Approaches

Grow in a single security perimeter

Traditional approach for security enhancements in CPUs, OSes...

Failure is likely + catastrophic

Add additional partitions

Many small security perimeters, e.g. for each use case Small, survivable failures

Little bits of security

```
Legacy platforms (CPUs, OSes, TEEs...) are too complex to debug too valuable to abandon
```

(Only?) solution:

- On-chip hardware that doesn't trust main CPU/OS/software
 - Intra-chip security perimeter
 - Hardware is unique: Security won't be ruined by a lower layer
 - Moore's Law helps (cheap transistors)
- Separate scaling: security complexity <<< system complexity

Minimal crypto core

How to best build circuits like this?

- What goes in "CRYPTO"?
- Redundancy?
- Algorithm-level SCA?
- Canary/anti-glitch?

P(fail vs. noninvasive attack) = ? P(fail vs. invasive attack) = ???????

In-field results seem mostly good...

 My team's CryptoFirewall & CryptoManager cores, DPA-resistant cores/libraries

Crypto-based secure execution

What should this look like?

- CPU? FPGA? FSM? SGX-like mode?
 Something new?
- Include RAM, storage, UI, network...?
- Non-hierarchical trust models?

Lots of <u>crypto</u> problems to solve

P(fail) = ?

- P(bitcoins stolen)?
- P(SSL private key exposed)?
- ...

··· 🕟

Plumbing (manufacturing, programming, test...)

Historically neglected critical 'plumbing'

- many keys
- many product types
- many component vendors
- many protocols & use cases
- many security requirements

Cannot grow factory costs, downtime

Back-end is lots of work

- Factory, data center...
- Largest area of R&D spend for our CryptoManager business

Outputs

Crypto-based secure execution

Good buildings > strong foundations

Dreaming...

- What programs will we write?
- What new problems will arise?

Dreams of advanced surgeries are irrelevant without basic sanitation

These Problems Matter

Looking Ahead

- Macro trend of worsening will continue for 3-5 years minimum
 - Individual designs may fare much better/worse
- Technology industry's future depends on finding solutions
 - Otherwise, security risks will erase society's benefits from new technology
- Cryptography = a very broad & wonderful set of problems

Thank You

For slides, questions, or thoughts: paul@cryptography.com

