

Constructing Rate-1 MACs from Related-Key Unpredictable Block Ciphers: PGV Model Revisited

Liting Zhang, Wenling Wu, Peng Wang, Lei Zhang, Shuang Wu and Bo Liang

中国科学院软件研究所 Institute of Software, Chinese Academy of Sciences

Outline

Background

- > MACs: definition, security and classification
- Rate-1 MACs
- MACs from unpredictable block ciphers

Our Work

- Attacks on current Rate-1 MACs
- Assumption
- Rate-1 MACs from PGV model
- Relationships among them
- Summary and Future Work

Background 1/7

Message Authentication Codes (MACs) provide

- Data integrity protection,
- Data origination authentication,

and are widely used (in Banking applications, Internet services, ...)

A MAC algorithm includes:

- 1) A key generation algorithm $K \stackrel{\$}{\leftarrow} \text{KG}$
- 2) A tag generation algorithm
- 3) A verification algorithm

 $K \stackrel{\$}{\leftarrow} \mathrm{KG}$ $T \stackrel{\$}{\leftarrow} \mathrm{TG}(K, M)$ $d \leftarrow \mathrm{VF}(K, M, T)$

信息安全国家重点实验室 State Key Laboratory Of Information Security

Background 2/7

The security of a MAC algorithm F = (KG, TG, VF) is evaluated by how unpredictable (or unforgeable) it is,

Experiment $\operatorname{Exp}_{F,\mathcal{A}}^{\operatorname{mac}}$ $K \stackrel{\$}{\leftarrow} \operatorname{KG};$ while \mathcal{A} makes a query M to $\operatorname{TG}_{K}(\cdot)$, do $\operatorname{Tag} \stackrel{\$}{\leftarrow} \operatorname{TG}_{K}(M);$ return Tag to $\mathcal{A};$ if \mathcal{A} makes a query (M,T) to $\operatorname{VF}_{K}(\cdot, \cdot)$ s.t. $\operatorname{VF}_{K}(M,T)$ returns 1 and M was never queried to $\operatorname{TG}_{K}(\cdot);$ then return 1 else return 0.

$$\operatorname{Adv}_{F,\mathcal{A}}^{\operatorname{mac}} = \Pr[\mathbf{Exp}_{F,\mathcal{A}}^{\operatorname{mac}} = 1] \qquad \operatorname{Adv}_{F}^{\operatorname{mac}}(t,q,\mu) = \max_{\mathcal{A}} \{\operatorname{Adv}_{F,\mathcal{A}}^{\operatorname{mac}}\}$$

Background 3/7

Different kinds of MACs

Block-cipher-based OMAC, XCBC, PMAC, ...

Hash-function-based NMAC, HMAC, ...

Universal-hash-function-based UMAC, Poly1305-AES

Dedicated MACs MAA, COMP-128, ...

信息安全国家重点实验室 State Key Laboratory Of Information Security

Background 4/7

For the block-cipher-based MACs, its efficiency is mostly influenced by Rate.

Rate = $\frac{\#$ block-cipher invocations # message blocks

Current Rate-1 MACs: OMAC, PMAC, ...

信息安全国家重点实验室 State Key Laboratory Of Information Security

Background 5/7

For the block-cipher-based MACs, its security is mostly influenced by the security of E.

$$\mathbf{Adv}_{F[E]}^{\mathbf{prf}}(t,q,\mu) \le O(\sigma^2) \times \mathbf{Adv}_E^{\mathbf{prp}}(t',q',\mu')$$

However,

A secure MAC needs only to be unpredictable (<< prf).

Reducing MAC security to the unpredictability of block ciphers is desirable and feasible.

信息安全国家重点实验室 State Key Laboratory Of Information Security

Background 6/7

Such constructions were first proposed by Dodis, et al

Enciphered CBC mode (EuroCrypt 2008)

SS-NMAC (Crypto 2009)

信息安全国家重点实验室 State Key Laboratory Of Information Security

FSE 2010

SCAS 中国科学院软件研究所 Institute of Software, Chinese Academy of Sciences

Background 7/7

Summary of the current work

Constructions	Requirements on E	Rate
OMAC, TMAC, XCBC, PMAC, EMAC, GCBC, RAMC, f9,	pseudorandom (prp)	1
Enciphered CBC mode	unpredictable	2
SS-NMAC	unpredictable	3
Other known MACs	prp	>1
???	unpredictable	1

信息安全国家重点实验室 State Key Laboratory Of Information Security

All current rate-1 MACs may not be secure when instantiated with a related-key unpredictable block cipher E'.

$$E'(K,M) = \begin{cases} m_1 ||m_2||m_3||c, & \text{if } \mathrm{msb}_1(m_1) = 0, \\ m_1 ||c||m_3||m_4, & \text{if } \mathrm{msb}_1(m_1) = 1, \end{cases}$$

$$M = m_1 ||m_2||m_3||m_4, \ |m_i| = n/4 \text{ for } 1 \le i \le 4,$$

$$c = \operatorname{CBC}[Q_K](m_1 m_2 m_3 m_4)$$

$$Q : \mathcal{K} \times \{0, 1\}^{n/4} \to \{0, 1\}^{n/4} \text{ is a block cipher with RK-PRP security.}$$

信息安全国家重点实验室 State Key Laboratory Of Information Security

Our Work 2/12

Example: XCBC[E'] is not secure.

1) Adversary \mathcal{A} queries $\operatorname{XCBC}_{E'}(\cdot)$ with 0^n , obtains the tag $T^1 = t_1^1 t_2^1 t_3^1 t_4^1$; 2) \mathcal{A} queries $\operatorname{XCBC}_{E'}(\cdot)$ with 10^{n-1} , obtains the tag $T^2 = t_1^2 t_2^2 t_3^2 t_4^2$; 3) \mathcal{A} makes a forgery (M', T^1) , where

$\begin{cases} M' = (t_1^1 t_2^1 t_3^1 t_4^2) T^1, & \text{if} \\ M' = (t_1^2 t_2^2 t_3^2 t_4^1) T^1, & \text{if} \end{cases}$	$ \operatorname{msb}_1(t_1^1) = 0, \\ \operatorname{msb}_1(t_1^1) = 1. $
--	--

信息安全国家重点实验室 State Key Laboratory Of Information Security

Our Work 3/12

Why are the current rate-1 MACs insecure when instantiated with E'?

The secrecy of chaining values can no longer be kept, which is fatal to their security as MACs.

Assumption:

To study the security of MACs based on unpredictable block ciphers, assume all their chaining values are available to adversaries.

- 1) It explains why current rate-1 MACs are insecure when their block ciphers are only related-key unpredictable;
- 2) It explains why enciphered CBC and SS-NMAC are secure against Side Channel Attacks as long as their block ciphers are.

信息安全国家重点实验室 State Key Laboratory Of Information Security

Our Work 4/12

Under this assumption, we try to construct rate-1 MACs in keyed PGV model.

MAC
$$F_s(K, M)$$
 $s = 1, 2, \dots, 64$
 $K \stackrel{\$}{\leftarrow} \mathcal{K}_E;$
for $i = 1$ to l do
 $T_i \leftarrow f_s(K, M_i, T_{i-1})$
return $T_l.$

 $f(K, M_i, T_{i-1}) = E(K \oplus \text{KM}, \text{IB}) \oplus \text{FF}$

$$K \stackrel{\$}{\leftarrow} \mathcal{K}_E$$

IB, KM, FF $\in \{M_i, T_{i-1}, M_i \oplus T_{i-1}, Cst\}$
 $T_0 = Cst$

信息安全国家重点实验室 State Key Laboratory Of Information Security

Our Work 5/12

E is assumed to be unpredictable against a special kind of related-key attacks (Φ_K^{\oplus} -restricted).

Experiment $\operatorname{Exp}_{E,\mathcal{A}}^{\operatorname{rk-up}}$ $K \stackrel{\$}{\leftarrow} \mathcal{K}_E$; while \mathcal{A} makes a query (KM, M) to $E(K, \cdot)$, do $T \leftarrow E(\operatorname{KM} \oplus K, M)$; return T to \mathcal{A} ; until \mathcal{A} stops and outputs (KM', M', T') such that 1) $E(\operatorname{KM'} \oplus K, M') = T'$; 2) (KM', M') was never queried to $E(K, \cdot)$; then return 1 else return 0.

$$\begin{cases} \mathbf{Adv}_{E}^{\mathrm{rk-up}}(\mathcal{A}) \stackrel{\mathrm{def}}{=} \Pr[\mathbf{Exp}_{E,\mathcal{A}}^{\mathrm{rk-up}} = 1], \\ \mathbf{Adv}_{E}^{\mathrm{rk-up}}(t,q,\mu) \stackrel{\mathrm{def}}{=} \max_{\mathcal{A}} \{\mathbf{Adv}_{E}^{\mathrm{rk-up}}(\mathcal{A})\} \end{cases}$$

信息安全国家重点实验室 State Key Laboratory Of Information Security

Our Work 6/12

In keyed PGV model, we find some MACs are ...

vulnerable to fixed-T attack

vulnerable to fixed-M attack

信息安全国家重点实验室 State Key Laboratory Of Information Security

FSE 2010

「SCAS 中国科学院软件研究所 Institute of Software, Chinese Academy of Sciences

Our Work 7/12

There are also some MACs secure, such like

 $\mathbf{Adv}_{F_s[E]}^{\mathrm{mac}}(t,q,\mu) \leq (\sigma^2 - \sigma + 1)\mathbf{Adv}_E^{\mathrm{rk-up}}(t',q',\mu')$

信息安全国家重点实验室 State Key Laboratory Of Information Security

Our Work 8/12

In total, we find in the keyed PGV model that

- Meaningless (15)
- 1 Vulnerable to fixed-M attack (6)
- 2 Vulnerable to fixed-T attack (6)
- 3 Vulnerable to fixed-(M+T) attack (13)

 $f_i(i = 1, 2, \cdots, 24)$ can be used to construct secure MACs for prefix-free messages.

$$\begin{split} f_i &(i = 1, 2, 3, 4) \\ f_j &(j = 5, 6, \cdots, 12) \\ f_k &(k = 13, 14, \cdot, 20) \\ \text{can also be used to construct secure} \\ \text{hash functions with different security levels.} \end{split}$$

			cno	ice of IB	
choice of KM	choice of FF	M_i	T_{i-1}	$M_i \oplus T_{i-1}$	Cst
M_i	M_i	_	f_{17}	f_{20}	_
	T_{i-1}	1	f_5	f_8	1
	$M_i \oplus T_{i-1}$	1	f_7	f_6	1
	Cst	-	f_{15}	f_{19}	_
T_{i-1}	M_i	f_1	2	f_4	2
	T_{i-1}	f_{21}	_	f_{24}	_
	$M_i \oplus T_{i-1}$	f_3	2	f_2	2
	Cst	f_{23}	_	f_{22}	_
$M_i \oplus T_{i-1}$	M_i	f_9	f_{12}	3	3
	T_{i-1}	f_{11}	f_{10}	3	3
	$M_i \oplus T_{i-1}$	f_{14}	f_{18}	3	3
	Cst	f_{13}	f_{16}	3	3
Cst	M_i	_	2	3	_
	T_{i-1}	1	_	3	_
	$M_i \oplus T_{i-1}$	1	2	3	3
	Cst	_	_	3	_

信息安全国家重点实验室 State Key Laboratory Of Information Security

FSE 2010

CID

Our Work 9/12

In total, we find in the keyed PGV model that

All MACs with a fixed key are unsatifying;

8 MACs may offer relatively high efficiency;

FF has no influence over the MAC security.

		choice of IB			
choice of KM	choice of FF	M_i	T_{i-1}	$M_i \oplus T_{i-1}$	Cst
M_i	M_i	_	f_{17}	f_{20}	_
	T_{i-1}	1	f_5	f_8	1
	$M_i \oplus T_{i-1}$	1	f_7	f_6	1
	Cst	_	f_{15}	f_{19}	—
T_{i-1}	M_i	f_1	2	f_4	2
	T_{i-1}	f_{21}	_	f_{24}	—
	$M_i \oplus T_{i-1}$	f_3	2	f_2	2
	Cst	f_{23}	_	f_{22}	_
$M_i \oplus T_{i-1}$	M_i	f_9	f_{12}	3	3
	T_{i-1}	f_{11}	f_{10}	3	3
	$M_i \oplus T_{i-1}$	f_{14}	f_{18}	3	3
	Cst	f_{13}	f_{16}	3	3
Cst	M_i	_	2	3	_
	T_{i-1}	1	_	3	—
	$M_i \oplus T_{i-1}$	1	2	3	3
	Cst	-	-	3	—

Our Work 10/12

We refine the 24 secure MACs in Compact PGV model.

MAC $G_s(K, M)$ $K \stackrel{\$}{\leftarrow} \mathcal{K}_E;$ for i = 1 to l do $T_i \leftarrow g_s(K, M_i, T_{i-1})$ return $T_l.$

$$g(K, M_i, T_{i-1}) = E(K \oplus \text{KM}, \text{IB})$$
$$K \stackrel{\$}{\leftarrow} \mathcal{K}_E$$
$$\text{IB, KM} \in \{M_i, T_{i-1}, M_i \oplus T_{i-1}, \text{Cst}\}$$
$$T_0 = \text{Cst}$$

信息安全国家重点实验室 State Key Laboratory Of Information Security

Our Work 11/12

- Not meaningful (7)
- 3 Vulnerable to fixed-(M+T) attack (3)

 $g_s(s = 0, 1, \dots, 5)$ can be used to construct secure MACs for prefix-free messages.

	choice of IB			
choice of KM	M_i	T_{i-1}	$M_i \oplus T_{i-1}$	Cst
M_i	-	g_0	g_5	_
T_{i-1}	g_1	—	g_4	_
$M_i \oplus T_{i-1}$	g_2	g_3	3	3
Cst	-	—	3	—

Moreover, we find $g_s(s = 0, 1, \dots, 5)$ are in fact equivalent to each other.

There exists 6 invertible 2*2 matrices over GF(2),

$$A_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, A_2 = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, A_3 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, A_4 = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, A_5 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, A_6 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

such that $\forall 0 \leq s1 \leq s2 \leq 5$, $\exists j \in \{1, 2\cdots, 6\}$,

$$(\mathrm{KM}_{s1}, \mathrm{IB}_{s1}) \times A_j = (\mathrm{KM}_{s2}, \mathrm{IB}_{s2})$$

信息安全国家重点实验室 State Key Laboratory Of Information Security

Our Work 12/12

The equivalence implies related-mode attacks on them.

-Users take the same key for G_i , G_j , $0 \le i < j \le 5$; -Adversaries can forge against G_i after querying G_j .

A suggestion to break this equivalence:

For $s1 = (s2 + 3) \mod 6$, let G_{s1} and G_{s2} take distinct-and-fixed T_0 .

Summary and Future Work 1/2

- All current rate-1 MACs may not guarantee their security when instantiated with related-key unpredictable block ciphers;
- Assumption: Chaining values are available to adversaries;
 - 1) MACs secure under this assumption is secure against Side Channel Attacks as long as their underlying block ciphers are;
 - The studies on MACs and hash functions are much more similar than before.
 black-box analysis → semi-white-box analysis
- In keyed PGV model, 24 rate-1 MACs are proved to be secure for prefix-free messages;
- Relationships among them are investigated.

Summary and Future Work 2/2

Limitations:

1) rk-up (Φ_K^{\oplus} -restricted) >> mac,

 $\mathbf{Adv}_{F_s[E]}^{\mathbf{mac}}(t,q,\mu) \le (\sigma^2 - \sigma + 1)\mathbf{Adv}_E^{\mathbf{rk}-\mathbf{up}}(t',q',\mu'),$

2) The 24 MACs found here may not run faster than none rate-1 MACs, due to their large number of key schedules.

Question:

Is it possible to construct rate-1 MACs from only unpredictable block ciphers (not necessarily related-key secure)?

Thanks !

中国科学院软件研究所 Institute of Software, Chinese Academy of Sciences