Converting MITM Preimage Attack into Pseudo Collision Attack: Application to SHA-2

#### Ji Li<sup>1</sup>, Takanori Isobe<sup>2</sup> and Kyoji Shibutani<sup>2</sup>

<sup>1</sup>Sony China Research Laboratory <sup>2</sup>Sony Corporation

Copyright 2012 Sony Corporation

FSE 2012, March 20, 2012

# Outline

Background and summary of results

Propose conversion of MITM preimage attack into pseudo collision attack

□ Partial target preimage attack ⇒ pseudo collision attack
□ MITM preimage attack ⇒ partial target preimage attack

#### Applications

Pseudo collision attacks on reduced SHA-2 family, Skein-512 and BLAKE

# Background



Collision attack

□ Find (*M*, *M'*) s.t.  $M \neq M'$  and H(IV, M) = H(IV, M')

Preimage attack

□ Given d (= H(IV, M)), find M' s.t. H(IV, M') = d

#### Relation between collision security and preimage security

- □ Theory: no implication [RS04]
- □ Practice: ?

Copyright 2012 Sony Corporation

# **Open question**

Can we efficiently convert (pseudo) preimage attack to (pseudo) collision attack ?

□ e.g. SHA-256



## **Summary** (pseudo collision attacks)

| algorithm<br>(# steps/rounds) | # attacked<br>steps/rounds       | complexity               | reference |
|-------------------------------|----------------------------------|--------------------------|-----------|
| SHA-256<br>(64)               | <b>32</b> <sup>*1</sup>          | practical                | [MNS11]   |
|                               | 43                               | 2 <sup>126</sup>         |           |
|                               | 52                               | 2 <sup>127.5</sup>       |           |
| SHA-512<br>(80)               | 24                               | <b>2</b> <sup>28.5</sup> | [IMPR09]  |
|                               | 46                               | 2 <sup>254.5</sup>       |           |
|                               | 57                               | 2 <sup>255.5</sup>       |           |
| Skein-512<br>(72)             | 22                               | 2 <sup>253.8</sup>       |           |
|                               | 37                               | 2 <sup>255.7</sup>       |           |
| BLAKE-256<br>(14)             | <b>4</b><br>(w/o initialization) | 2 <sup>112</sup>         |           |

\*1: semi-free-start-collision attack

[MNS11] F.Mendel, T.Nad, M.Schlaffer, "Finding SHA-2 characteristics: Searching through a minefield of contradictions", ASIACRYPT 2011.

[IMPR09] S.Indesteege et al., "Collisions and other non-random properties for step-reduced SHA-256", SAC 2009. 5 Copyright 2012 Sony Corporation



#### Copyright 2012 Sony Corporation

## Partial target preimage attack





#### (t-bit) partial target preimage attack

Given *z*, find *M*' s.t.  $trunc_t(H(IV, M')) = z$ , where  $trunc_t(x)$ : *t*-bit truncation of *x* 

 A<sup>ppre</sup> finds a (t-bit) partial target preimage with 2<sup>s</sup> computations

# Collision attack (from A<sup>ppre</sup>)





 $\Box$  Condition: if s < t / 2, faster than generic collision attack

How to construct efficient partial target preimage attack?

#### **Meet-in-the-middle preimage attack**



Narrow-pipe Merkle-Damgard + Davies-Meyer mode

- Neutral message words m<sub>1</sub> and m<sub>2</sub>
  - $\Box$   $z_1$ ,  $z_2$  are independently computed from  $m_2$ ,  $m_1$ , respectively
- $\underline{2^{|m1|+|m2|}}(z_1 + z_2) \text{ with a complexity of } 2^{|m1|+2|m2|} (<< 2^{|m1|+|m2|})$

 $\Box$  2<sup>|m1|</sup> of  $z_1$  with a complexity 2<sup>|m1|</sup>, 2<sup>|m2|</sup> of  $z_2$  with a complexity 2<sup>|m2|</sup>

• Total complexity =  $2^{n-(|m1|+|m2|)} \times \max(2^{|m1|}, 2^{|m2|})$ 

### **Moving matching point of MITM**



- Splice-and-Cut [AS08]
  - □ Starting/matching point can be moved to any position

### **Moving matching point of MITM**



- Splice-and-Cut [AS08]
  - Starting/matching point can be moved to any position
- MITM preimage attack with the matching point at the end is considered as partial target preimage attack

#### **MITM** preimage to partial target preimage



 MITM preimage attack with the matching point at the end is considered as partial target preimage attack

- □ e.g.  $|m_1| = 4$ ,  $|m_2| = 5$ , |z| = 4
  - $2^4$  of  $(z_1 + z_2)$  are required to obtain one 4-bit partial target preimage
  - Compute 2<sup>2</sup> of  $z_1$ , and 2<sup>2</sup> of  $z_2 \Rightarrow 2^4$  of  $(z_1 + z_2)$
  - 1 preimage of the partial target z is derived with a complexity of 2<sup>2</sup>

□ Condition for efficient collision attack: s < t / 2□ t = 4,  $s = 2 \implies$  worse than generic collision attack...

#### **MITM preimage to partial target preimage**



MITM preimage attack with the matching point at the end is considered as partial target preimage attack

□ e.g. 
$$|m_1| = 4$$
,  $|m_2| = 5$ ,  $|z| = 4$ 

•  $2^4$  of  $(z_1 + z_2)$  are required to obtain one 4-bit partial target preimage

- Compute  $2 \circ f z_1$ , and  $2 \circ f z_2 \Rightarrow 2 \circ f (z_1 + z_2)$  $2 \circ 2^4 \circ 2^5 \circ 2^9$
- X preimage of the partial target z is derived with a complexity of  $2^{2}$   $2^{5}$   $2^{5}$ 
  - = 1 preimage of the partial target z is derived with a complexity of  $\mathbf{1}$

□ Condition for efficient collision attack: s < t / 2  $t = 4, s = 0 \Rightarrow$  better than generic collision attack ! • Extra freedom of neutral bits can be exploited!

# Applications

## **Conversion (6 steps moving forward)**



Preimage attack on 43-step reduced SHA-256 [AGMSW09]

□ Padding words  $W_{13,14,15}$  can be controlled

Neutral message words etc. are moved forward by 6 steps

# **Conversion (6 steps moving forward)**



- Preimage attack on 43-step reduced SHA-256 [AGMS V09]
  - $\Box$  Padding words  $W_{13,14,15}$  can be controlled
- Neutral message words etc. are moved forward by 6 steps
- Attack complexity
  - □ Neutral words:  $|W_{24}| = 5$ ,  $|W_{27}| = 4$ , bit size of partial target t = 4
  - □ s = 0 (2<sup>5</sup> preimages of 4-bit target with complexity of 2<sup>5</sup>)

 $\Box \text{ Total complexity} = 2^{126} \quad (= 2^{(n-t)/2} \times 2^s = 2^{(256-4)/2} \times 2^0)$ 

Copyright 2012 Sony Corporation

# **More results on SHA-2**

- MITM preimage attack on 46-step SHA-512 [AGMSW09]
  - Pseudo collision attack on 46-step SHA-512
- Pseudo collision attacks on SHA-224/384
  - Due to wide-pipe construction, other MITM preimage attacks are required to reduce the total time complexity
  - □ SHA-224: 40-step pseudo collision attack
  - □ SHA-384: 40-step pseudo collision attack
- Preimage attacks using bicliques [KRS12]

#### Preimage attacks on

45-step SHA-256 HF 50-step SHA-512 HF

52-step SHA-256 CF 57-step SHA-512 CF

HF: hash function CF: compression function Copyright 2012 Sony Corporation

#### Pseudo collision attacks on

45-step SHA-256 HF 50-step SHA-512 HF

52-step SHA-256 <u>HF</u> 57-step SHA-512 <u>HF</u>

# **Application to Skein and BLAKE**

#### Skein-512

MITM preimage attacks [KRS12]

#### Pseudo collision attack

| target      | complexity                | target             | complexity                |
|-------------|---------------------------|--------------------|---------------------------|
| 22-round HF | 2 <sup>508</sup>          | 22-round HF        | 2 <sup>253.8</sup>        |
| 37-round CF | <b>2</b> <sup>511.2</sup> | 37-round <u>HF</u> | <b>2</b> <sup>255.7</sup> |

#### BLAKE-256 w/o initialization

| MITM preimage attacks [WOS09] |            |                  | 609] <b>P</b> | Pseudo collision attack |                         |  |
|-------------------------------|------------|------------------|---------------|-------------------------|-------------------------|--|
|                               | target     | complexity       |               | target                  | complexity              |  |
|                               | 4-round CF | 2 <sup>224</sup> |               | 4-round CF              | <b>2</b> <sup>112</sup> |  |
|                               |            |                  |               |                         |                         |  |

 [KRS12] D.Khovratovich, C.Rechberger, A.Savelieva, "Bicliques for preimages: Attacks on Skein-512 and the SHA-2 family", FSE2012
[WOS09] L.Wang, K.Ohta, K.Sakiyama, "Free-start preimages of round-reduced Blake compression function", Rump session at ASIACRYPT2009.

Copyright 2012 Sony Corporation

# **Advantages and limitations**

#### Advantages

- Compared to previous collision attack based on differentials: significantly improve the number of attacked steps/rounds
- Compared to MITM preimage attack: more steps/rounds may be attacked due to relaxed conditions for selecting neutral words (i.e., do not need to care about padding bits)

#### Limitations

- □ Time complexity is likely to be high due to a few gains from MITM
  - e.g.) complexity of pseudo collision attacks on reduced SHA-2 is much larger than previous (pseudo) collision attacks based on differential attacks
- □ Hard to extend to collision attack (only a pseudo collision attack)

# Conclusion

- Proposed generic conversion of MITM preimage attack to pseudo collision attack
- Applications to SHA-2, Skein, BLAKE

Pseudo collision attacks on
52-step SHA-256 hash function,
57-step SHA-512 hash function,
37-round Skein-512 hash function,
4-round BLAKE-256 w/o initialization

Maybe possible to apply our technique to other hash functions such as Tiger

# Thank you for your attention!