
.
SPRING

. . .
Tweaks

. . . .
Implementation

SPRING
Fast Pseudorandom Functions from Rounded Ring Products

Abhishek Banerjee1 Hai Brenner2 Gaëtan Leurent3

Chris Peikert1 Alon Rosen2

1Georgia Institute of Technology

2IDC Herzliya

3UCL Inria

FSE 2014

G. Leurent () SPRING FSE 2014 1 / 16

.
SPRING

. . .
Tweaks

. . . .
Implementation

Motivation

..

Public key

▶ Strong algebraic
structure

▶ Security reduction
▶ Slow
.

Secret key

▶ Security from
cryptanalysis

▶ Fast

Bridging the gap

▶ Can we have an efficient design with strong algebraic structure?
▶ Security reduction from a wellunderstood problem?
▶ Extra features?
▶ Previous examples: SWIFFT, FSB, Lapin, HB family

G. Leurent () SPRING FSE 2014 2 / 16

.
SPRING

. . .
Tweaks

. . . .
Implementation

Motivation

..

Public key

▶ Strong algebraic
structure

▶ Security reduction
▶ Slow
.

Secret key

▶ Security from
cryptanalysis

▶ Fast

Bridging the gap

▶ Can we have an efficient design with strong algebraic structure?
▶ Security reduction from a wellunderstood problem?
▶ Extra features?
▶ Previous examples: SWIFFT, FSB, Lapin, HB family

G. Leurent () SPRING FSE 2014 2 / 16

.
SPRING

. . .
Tweaks

. . . .
Implementation

SPRING construction

Subset Product with Rounding over a ring

Fa,⃗s(x1, … , xk) ∶= S
⎛
⎜
⎜
⎝
a ⋅

k

j=1

sxjj

⎞
⎟
⎟
⎠

▶ Latticebased PRF [BPR, Eurocrypt ’12]
▶ Polynomial ring Rp = ℤp[X]/(Xn + 1)
▶ Key: a, (si)ki=1 ∈ Rp
▶ Rounding function S

▶ e.g. MSB of each polynomial coefficient

G. Leurent () SPRING FSE 2014 3 / 16

.
SPRING

. . .
Tweaks

. . . .
Implementation

SPRING security

▶ Based on the RL W E assumption
▶ Secret polynomial s ∈ Rp, Rp = ℤp[X]/(Xn + 1)
▶ Distinguish (ai, ai ⋅ s + ei) from uniform
▶ Reduction to worstcase ideal lattice problems

▶ Deterministic version: RL W R assumption
▶ Secret polynomial s ∈ Rp
▶ Distinguish (ai, ⌊ai ⋅ s⌉) from uniform
▶ Rounding removes information, like adding noise

▶ Two SPRING outputs gives something similar to an LWR sample

▶ Fa,⃗s(x1, … , xk) ∶= S a ⋅ ∏k
j=1 s

xj
j

▶ Secret polynomials s, t
▶ Output (⌊t⌉, ⌊t ⋅ s⌉)

G. Leurent () SPRING FSE 2014 4 / 16

.
SPRING

. . .
Tweaks

. . . .
Implementation

SPRING security

▶ Based on the RL W E assumption
▶ Secret polynomial s ∈ Rp, Rp = ℤp[X]/(Xn + 1)
▶ Distinguish (ai, ai ⋅ s + ei) from uniform
▶ Reduction to worstcase ideal lattice problems

▶ Deterministic version: RL W R assumption
▶ Secret polynomial s ∈ Rp
▶ Distinguish (ai, ⌊ai ⋅ s⌉) from uniform
▶ Rounding removes information, like adding noise

▶ Two SPRING outputs gives something similar to an LWR sample

▶ Fa,⃗s(x1, … , xk) ∶= S a ⋅ ∏k
j=1 s

xj
j

▶ Secret polynomials s, t
▶ Output (⌊t⌉, ⌊t ⋅ s⌉)

G. Leurent () SPRING FSE 2014 4 / 16

.
SPRING

. . .
Tweaks

. . . .
Implementation

From provable security to efficiency

▶ Security reduction require huge parameters

▶ What happens when we use small parameters?
▶ Security reduction not applicable as such
▶ Guideline towards reasonable constructions (mode of operation?)

▶ Bias can appear (was negligible with large parameters)
▶ Concrete security evaluation needed

G. Leurent () SPRING FSE 2014 5 / 16

.
SPRING

. . .
Tweaks

. . . .
Implementation

Choice of ring

SPRING
Fa,⃗s(x1, … , xk) ∶= S a ⋅ ∏k

j=1 s
xj
j over Rp = ℤp[X]/(Xn + 1)

▶ Select parameters with fast polynomial product

1 Polynomial product very efficient using FFT algorithm
2 Arithmetic mod 2i + 1 is efficient in software

▶ Problem was studied for SWIFFT
▶ Use p = 257, n = 128

G. Leurent () SPRING FSE 2014 6 / 16

.
SPRING

. . .
Tweaks

. . . .
Implementation

Product in the ring R257

Fast polynomial product h = f ⋅ g

1 Evaluate f and g: fi = f(xi), gi = g(xi) (256 points)
2 Multiply values coefficientswise
3 Interpolate h s.t. h(xi) = fi × gi (degree 256)

▶ Let 𝜔 be a 256th root of unity, xi = 𝜔 i, 𝜔 = 41
Use FFT for evaluation/interpolation in n log(n)

▶ We want f ⋅ g mod x128 + 1
▶ x128 + 1 = ∏(x − 𝜔2i+1)
▶ Chinese Remainder: compute h mod x − 𝜔2i+1 i.e. h(𝜔2i+1)

▶ Evaluating f(𝜔2i+1)
▶ 𝜙 ∶ ∑ bi ⋅ xi ↦ ∑(bi ⋅ 𝜔 i) ⋅ xi
▶ 𝜙(f)(𝜔2i) = f(𝜔2i+1)

▶ FFT128(𝜙(f ⋅ g)) = FFT128(𝜙(f)) × FFT128(𝜙(g)) (coeff.wise ×)
G. Leurent () SPRING FSE 2014 7 / 16

.
SPRING

. . .
Tweaks

. . . .
Implementation

Product in the ring R257

Fast polynomial product h = f ⋅ g

1 Evaluate f and g: fi = f(xi), gi = g(xi) (256 points)
2 Multiply values coefficientswise
3 Interpolate h s.t. h(xi) = fi × gi (degree 256)

▶ Let 𝜔 be a 256th root of unity, xi = 𝜔 i, 𝜔 = 41
Use FFT for evaluation/interpolation in n log(n)

▶ We want f ⋅ g mod x128 + 1
▶ x128 + 1 = ∏(x − 𝜔2i+1)
▶ Chinese Remainder: compute h mod x − 𝜔2i+1 i.e. h(𝜔2i+1)

▶ Evaluating f(𝜔2i+1)
▶ 𝜙 ∶ ∑ bi ⋅ xi ↦ ∑(bi ⋅ 𝜔 i) ⋅ xi
▶ 𝜙(f)(𝜔2i) = f(𝜔2i+1)

▶ FFT128(𝜙(f ⋅ g)) = FFT128(𝜙(f)) × FFT128(𝜙(g)) (coeff.wise ×)
G. Leurent () SPRING FSE 2014 7 / 16

.
SPRING

. . .
Tweaks

. . . .
Implementation

Product in the ring R257

Fast polynomial product h = f ⋅ g

1 Evaluate f and g: fi = f(xi), gi = g(xi) (256 points)
2 Multiply values coefficientswise
3 Interpolate h s.t. h(xi) = fi × gi (degree 256)

▶ Let 𝜔 be a 256th root of unity, xi = 𝜔 i, 𝜔 = 41
Use FFT for evaluation/interpolation in n log(n)

▶ We want f ⋅ g mod x128 + 1
▶ x128 + 1 = ∏(x − 𝜔2i+1)
▶ Chinese Remainder: compute h mod x − 𝜔2i+1 i.e. h(𝜔2i+1)

▶ Evaluating f(𝜔2i+1)
▶ 𝜙 ∶ ∑ bi ⋅ xi ↦ ∑(bi ⋅ 𝜔 i) ⋅ xi
▶ 𝜙(f)(𝜔2i) = f(𝜔2i+1)

▶ FFT128(𝜙(f ⋅ g)) = FFT128(𝜙(f)) × FFT128(𝜙(g)) (coeff.wise ×)
G. Leurent () SPRING FSE 2014 7 / 16

.
SPRING

. . .
Tweaks

. . . .
Implementation

Product in the ring R257

Fast polynomial product h = f ⋅ g mod x128 + 1

1 Evaluate f and g: fi = f(xi), gi = g(xi) (128 points)
2 Multiply values coefficientswise
3 Interpolate h s.t. h(xi) = fi × gi (degree 128)

▶ Let 𝜔 be a 256th root of unity, xi = 𝜔2i+1, 𝜔 = 41
Use FFT for evaluation/interpolation in n log(n)

▶ We want f ⋅ g mod x128 + 1
▶ x128 + 1 = ∏(x − 𝜔2i+1)
▶ Chinese Remainder: compute h mod x − 𝜔2i+1 i.e. h(𝜔2i+1)

▶ Evaluating f(𝜔2i+1)
▶ 𝜙 ∶ ∑ bi ⋅ xi ↦ ∑(bi ⋅ 𝜔 i) ⋅ xi
▶ 𝜙(f)(𝜔2i) = f(𝜔2i+1)

▶ FFT128(𝜙(f ⋅ g)) = FFT128(𝜙(f)) × FFT128(𝜙(g)) (coeff.wise ×)
G. Leurent () SPRING FSE 2014 7 / 16

.
SPRING

. . .
Tweaks

. . . .
Implementation

Implementation tricks

SPRING PRF
Fa,⃗s(x1, … , xk) ∶= S a ⋅ ∏k

j=1 s
xj
j

▶ Use FFT for the subset product

▶ ∏
xj=1

sj = 𝜙−1 FFT−1 ⨉xj=1
FFT(𝜙(sj))

▶ Store ̃sj ∶= FFT(𝜙(sj)) (equivalent key)

▶ ∏
xj=1

sj = 𝜙−1 FFT−1 ⨉xj=1
̃sj (coefficientswise product)

▶ Use counter mode for a stream cipher
▶ Single addition instead of subsetsum

G. Leurent () SPRING FSE 2014 8 / 16

.
SPRING

. . .
Tweaks

. . . .
Implementation

Implementation tricks

SPRING PRF
Fa,⃗s(x1, … , xk) ∶= S a ⋅ ∏k

j=1 s
xj
j

▶ Use FFT for the subset product

▶ ∏
xj=1

sj = 𝜙−1 FFT−1 ⨉xj=1
FFT(𝜙(sj))

▶ Store sij ∶= log sij , ̃sj ∶= FFT(𝜙(sj)) (equivalent key)

▶ ∏
xj=1

sj = 𝜙−1 FFT−1 exp ∑xj=1
sj (coefficientswise product)

▶ Use counter mode for a stream cipher
▶ Single addition instead of subsetsum

G. Leurent () SPRING FSE 2014 8 / 16

.
SPRING

. . .
Tweaks

. . . .
Implementation

Implementation tricks

SPRING PRF
Fa,⃗s(x1, … , xk) ∶= S a ⋅ ∏k

j=1 s
xj
j

▶ Use FFT for the subset product

▶ ∏
xj=1

sj = 𝜙−1 FFT−1 ⨉xj=1
FFT(𝜙(sj))

▶ Store sij ∶= log sij , ̃sj ∶= FFT(𝜙(sj)) (equivalent key)

▶ ∏
xj=1

sj = 𝜙−1 FFT−1 exp ∑xj=1
sj (coefficientswise product)

▶ Use counter mode for a stream cipher
▶ Single addition instead of subsetsum

G. Leurent () SPRING FSE 2014 8 / 16

.
SPRING

. . .
Tweaks

. . . .
Implementation

SPRING over R257 (p = 257, n = 128)

.. Key sij
1024(k + 1) bits

.
1

.
x1

. x2.
⋮

.

xk

.
kbit input x

.

Subset sum

.

∑
j xjsij

.

1024bit state
(128 8bit words)

.

exp

.

exp

.

exp

.

exp

.

exp

.

exp

.

ℤ256 → ℤ257

.

x ↦ 3x mod 257

.

FFT

.

FFT over
(ℤ257)128

.

𝜔−0

.

𝜔−1

.

𝜔−2

.

𝜔−3

.

𝜔−4

.

𝜔−5

.

xi ↦ xi × 𝜔−i

.

msb

.

msb

.

msb

.

msb

.

msb

.

msb

.

ℤ257 → ℤ2
128bit output

.

x ↦ ⌊2x/257⌉

G. Leurent () SPRING FSE 2014 9 / 16

.
SPRING

. . .
Tweaks

. . . .
Implementation

SPRING over R257 (p = 257, n = 128)

.. Key sij
1024(k + 1) bits

.
1

.
x1

. x2.
⋮

.

xk

.
kbit input x

.

Subset sum

.

∑
j xjsij

.

1024bit state
(128 8bit words)

.

exp

.

exp

.

exp

.

exp

.

exp

.

exp

.

ℤ256 → ℤ257

.

x ↦ 3x mod 257

.

FFT

.

FFT over
(ℤ257)128

.

𝜔−0

.

𝜔−1

.

𝜔−2

.

𝜔−3

.

𝜔−4

.

𝜔−5

.

xi ↦ xi × 𝜔−i

.

msb

.

msb

.

msb

.

msb

.

msb

.

msb

.

ℤ257 → ℤ2
128bit output

.

x ↦ ⌊2x/257⌉

G. Leurent () SPRING FSE 2014 9 / 16

.
SPRING

. . .
Tweaks

. . . .
Implementation

SPRING over R257 (p = 257, n = 128)

.. Key sij
1024(k + 1) bits

.
1

.
x1

. x2.
⋮

.

xk

.
kbit input x

.

Subset sum

.

∑
j xjsij

.

1024bit state
(128 8bit words)

.

exp

.

exp

.

exp

.

exp

.

exp

.

exp

.

ℤ256 → ℤ257

.

x ↦ 3x mod 257

.

FFT

.

FFT over
(ℤ257)128

.

𝜔−0

.

𝜔−1

.

𝜔−2

.

𝜔−3

.

𝜔−4

.

𝜔−5

.

xi ↦ xi × 𝜔−i

.

msb

.

msb

.

msb

.

msb

.

msb

.

msb

.

ℤ257 → ℤ2
128bit output

.

x ↦ ⌊2x/257⌉

G. Leurent () SPRING FSE 2014 9 / 16

.
SPRING

. . .
Tweaks

. . . .
Implementation

Tweaks to the construction

Problems because of the small parameters

1 Polynomial are noninversible with high probability
▶ Product in a subspace
▶ Use only units for the key elements

2 Rounding from ℤ257 has a bias 1/257
▶ Output bits biased
▶ Combine bits to reduce bias: SPRINGBCH
▶ Or use ℤ514: SPRINGCRT

G. Leurent () SPRING FSE 2014 10 / 16

.
SPRING

. . .
Tweaks

. . . .
Implementation

Tweaks to the construction

Problems because of the small parameters

1 Polynomial are noninversible with high probability
▶ Product in a subspace
▶ Use only units for the key elements

2 Rounding from ℤ257 has a bias 1/257
▶ Output bits biased
▶ Combine bits to reduce bias: SPRINGBCH
▶ Or use ℤ514: SPRINGCRT

G. Leurent () SPRING FSE 2014 10 / 16

.
SPRING

. . .
Tweaks

. . . .
Implementation

Tweaks to the construction

Problems because of the small parameters

1 Polynomial are noninversible with high probability
▶ Product in a subspace
▶ Use only units for the key elements

2 Rounding from ℤ257 has a bias 1/257
▶ Output bits biased
▶ Combine bits to reduce bias: SPRINGBCH
▶ Or use ℤ514: SPRINGCRT

G. Leurent () SPRING FSE 2014 10 / 16

.
SPRING

. . .
Tweaks

. . . .
Implementation

Tweaks to the construction

Problems because of the small parameters

1 Polynomial are noninversible with high probability
▶ Product in a subspace
▶ Use only units for the key elements

2 Rounding from ℤ257 has a bias 1/257
▶ Output bits biased
▶ Combine bits to reduce bias: SPRINGBCH
▶ Or use ℤ514: SPRINGCRT

G. Leurent () SPRING FSE 2014 10 / 16

.
SPRING

. . .
Tweaks

. . . .
Implementation

SPRING-BCH

▶ Reduce the bias by combining output bits
▶ Pilingup lemma: bias(a ⊕ b) = bias(a) ⋅ bias(b)

▶ Multiply with the transpose of the generating matrix of a code
▶ Syndrome for the dual code
▶ Any linear combination of output bits is the sum of d biased bits
▶ Bias reduced exponentially in d

▶ We use an extended BCH code
▶ Efficient
▶ Best known distance

▶ Efficiency loss: only 64 output bits

G. Leurent () SPRING FSE 2014 11 / 16

.
SPRING

. . .
Tweaks

. . . .
Implementation

SPRING-CRT

▶ Use the ring R514 = ℤ514[X]/(Xn + 1)
▶ Unbiased rounding from ℤ514

▶ Chinese Remainder decomposition: R514 ≅ R257 × R2
▶ Compute modulo 257 and modulo 2, combine outputs

▶ Computation in R2:
▶ Efficient algorithms for subsetproduct in the paper
▶ In counter mode: single multiplication using PCLMUL, or tables

G. Leurent () SPRING FSE 2014 12 / 16

.
SPRING

. . .
Tweaks

. . . .
Implementation

Implementation

▶ Implementation using SIMD instructions
▶ Compute operations in parallel on vector of data
▶ SSE2 on Intel/AMD x86: desktop (Core) and embedded (Atom)
▶ NEON on ARM: embedded CPU (Cortex A in smartphones, tablets)

▶ Subset sum optimized with precomputed tables
▶ 2bit inputs: [0, s0, s1, s0 + s1]
▶ 8bit inputs: 256 entries

▶ Multiplication in R2 using PCLMUL instruction (if available),
or precomputed tables

▶ Bottleneck is FFT

G. Leurent () SPRING FSE 2014 13 / 16

.
SPRING

. . .
Tweaks

. . . .
Implementation

FFT implementation tricks

▶ Reuse efficient FFT from the SIMD hash function

▶ Decompose FFT as a twodimensional FFT
▶ Parallel FFT on lines and columns

▶ Elements in ℤ257 as 16bit words

▶ Partial reduction mod257 with (x&256) - (x>>8)
▶ Output in [−127, 383]

▶ Multiplication in ℤ257 using 16bit signed multiplication
▶ Reduce operands to [−128, 128] beforehand

G. Leurent () SPRING FSE 2014 14 / 16

.
SPRING

. . .
Tweaks

. . . .
Implementation

Performance

▶ 2030 cycle/byte on Core i7 using SSE
▶ Slow for a stream cipher, fast enough for practical use

▶ SPRINGCRTCTR is about 4.5 times slower than AESCTR
▶ Excluding hardware AES instructions
▶ Same ratio on a range of architectures

SPRINGBCH SPRINGCRT AESCTR

Single CTR Single CTR ����XXXXAESNI AESNI

ARM Cortex A15 220 170 250 77 17.8 N/A
Atom 247 137 235 76 17 N/A

Core i7 Nehalem 74 60 76 29.5 6.9 N/A
Core i7 Ivy Bridge 60 46 62 23.5 5.4 1.3

G. Leurent () SPRING FSE 2014 15 / 16

.
SPRING

. . .
Tweaks

. . . .
Implementation

Conclusion

S: Subset Product with Rounding over a ring
▶ Strong algebraic structure

▶ Simple design
▶ Subset sum, table lookup, FFT, table lookup with small output

▶ Large linear part good for masking, MPC

▶ Based on a design with security reduction
▶ Security reduction does not apply with small parameters
▶ Cryptanalysis is needed to evaluate the security
▶ Expected security: about 128 bit

▶ High parallelism
▶ Reasonable performances with vector instructions
▶ Good performances in hardware?

G. Leurent () SPRING FSE 2014 16 / 16

Pseudo-code for SPRING

Implementation

Key: (ai)127i=0 , (sij)127i=0
k−1
j=0 ∈ ℤ256

Input: x1, x2, … xk ∈ {0, 1}
1: for 0 ≤ i < k do
2: ui ← ai +∑

j xjsij mod 256
3: ui ← 3ui mod 257
4: u⃗ ← FFT−1128(u⃗)
5: for 0 ≤ i < k do
6: ui ← ui ⋅ 𝜔−i mod 257
7: yi ← ⌊2 ⋅ ui/257⌉
8: return y⃗

G. Leurent () SPRING FSE 2014 17 / 16

	SPRING
	Tweaks
	Implementation
	Appendix

