SPRING

Fast Pseudorandom Functions from Rounded Ring Products

Abhishek Banerjee¹ Hai Brenner² <u>Gaëtan Leurent</u>³ Chris Peikert¹ Alon Rosen²

¹Georgia Institute of Technology

²IDC Herzliya

³UCL & Inria

FSE 2014

Bridging the gap

- Can we have an efficient design with strong algebraic structure?
 - Security reduction from a well-understood problem?
 - Extra features?
 - Previous examples: SWIFFT, FSB, Lapin, HB family

Bridging the gap

- Can we have an efficient design with strong algebraic structure?
 - Security reduction from a well-understood problem?
 - Extra features?
 - Previous examples: SWIFFT, FSB, Lapin, HB family

Fweaks 200 *Implementation* 0000

SPRING construction

Subset Product with Rounding over a ring

$$F_{a,\vec{s}}(x_1,\ldots,x_k) := S\left(a \cdot \prod_{j=1}^k s_j^{x_j}\right)$$

Lattice-based PRF

[BPR, Eurocrypt '12]

- Polynomial ring $R_p = \mathbb{Z}_p[X]/(X^n + 1)$
- Key: $a, (s_i)_{i=1}^k \in R_p$
- Rounding function S
 - e.g. MSB of each polynomial coefficient

Implementation 0000

 $R_p = \mathbb{Z}_p[X]/(X^n + 1)$

SPRING security

- Based on the RING-LEARNING WITH ERRORS assumption
 - Secret polynomial s ∈ R_p,
 - Distinguish $(a_i, a_i \cdot s + e_i)$ from uniform
 - Reduction to worst-case ideal lattice problems
- Deterministic version: Ring-Learning With Rounding assumption
 - Secret polynomial $s \in R_p$
 - Distinguish $(a_i, \lfloor a_i \cdot s \rfloor)$ from uniform
 - Rounding removes information, like adding noise

Two SPRING outputs gives something similar to an LWR sample

- $\models F_{a,\vec{s}}(x_1,\ldots,x_k) := S\left(a \cdot \prod_{j=1}^k s_j^{x_j}\right)$
- Secret polynomials s, t
- ▶ Output ([t], [t · s])

Implementation 0000

 $R_p = \mathbb{Z}_p[X]/(X^n + 1)$

SPRING security

- Based on the RING-LEARNING WITH ERRORS assumption
 - Secret polynomial s ∈ R_p,
 - Distinguish $(a_i, a_i \cdot s + e_i)$ from uniform
 - Reduction to worst-case ideal lattice problems
- Deterministic version: Ring-Learning With Rounding assumption
 - Secret polynomial $s \in R_p$
 - Distinguish $(a_i, \lfloor a_i \cdot s \rfloor)$ from uniform
 - Rounding removes information, like adding noise
- Two SPRING outputs gives something similar to an LWR sample
 - $F_{a,\vec{s}}(x_1,\ldots,x_k) := S\left(a \cdot \prod_{j=1}^k s_j^{x_j}\right)$
 - Secret polynomials s, t
 - Output $(\lfloor t \rceil, \lfloor t \cdot s \rceil)$

From provable security to efficiency

- Security reduction require huge parameters
- What happens when we use small parameters?
 - Security reduction not applicable as such
 - Guideline towards reasonable constructions (mode of operation?)
 - Bias can appear (was negligible with large parameters)
 - Concrete security evaluation needed

Tweaks 000 Implementation

Choice of ring

SPRING

$$F_{a,\vec{s}}(x_1,\ldots,x_k) := S\left(a \cdot \prod_{j=1}^k s_j^{x_j}\right) \quad \text{over } \mathbb{R}_p = \mathbb{Z}_p[X]/(X^n + 1)$$

- Select parameters with fast polynomial product
 - Polynomial product very efficient using FFT algorithm
 - 2 Arithmetic mod 2ⁱ + 1 is efficient in software
- Problem was studied for SWIFFT
 - ▶ Use *p* = 257, *n* = 128

Product in the ring R_{257}

Fast polynomial product $h = f \cdot g$

- **1** Evaluate f and g: $f_i = f(x_i)$, $g_i = g(x_i)$ (256 points)
 - 2 Multiply values coefficients-wise
 - **3** Interpolate h s.t. $h(x_i) = f_i \times g_i$

• Let ω be a 256-th root of unity, $x_i = \omega^i$,

- We want $f \cdot g \mod x^{128} + 1$
- Evaluating $f(\omega^{2i+1})$
- FFT₁₂₈($\phi(f \cdot g)$) = FFT₁₂₈($\phi(f)$) × FFT₁₂₈($\phi(g)$)

G. Leurent ()

SPRING

(degree 256)

7/16

Tweaks 000 Implementation

Product in the ring R_{257}

Fast polynomial product $h = f \cdot g$

- 1 Evaluate f and g: $f_i = f(x_i)$, $g_i = g(x_i)$ (256 points)
- 2 Multiply values coefficients-wise
- 3 Interpolate h s.t. $h(x_i) = f_i \times g_i$
 - Let ω be a 256-th root of unity, x_i = ωⁱ,
 Use FFT for evaluation/interpolation in n log(n)
 - We want $f \cdot g \mod x^{128} + 1$
 - ► $x^{128} + 1 = \prod (x \omega^{2i+1})$
 - Chinese Remainder: compute $h \mod x \omega^{2i+1}$ i.e. $h(\omega^{2i+1})$
 - Evaluating $f(\omega^{2i+1})$
 - $\phi: \sum b_i \cdot x^i \mapsto \sum (b_i \cdot \omega^i) \cdot x^i$
 - $\phi(f)(\omega^{2i}) = f(\omega^{2i+1})$
 - FFT₁₂₈($\phi(f \cdot g)$) = FFT₁₂₈($\phi(f)$) × FFT₁₂₈($\phi(g)$)

G. Leurent ()

SPRING

FSE 2014 7/16

(degree 256)

 $\omega = 41$

Tweaks 000 Implementation 0000

Product in the ring R_{257}

Fast polynomial product $h = f \cdot g$

- 1 Evaluate f and g: $f_i = f(x_i)$, $g_i = g(x_i)$ (256 points)
- 2 Multiply values coefficients-wise
- 3 Interpolate h s.t. $h(x_i) = f_i \times g_i$ (degree 256)
 - ► Let ω be a 256-th root of unity, $x_i = \omega^i$, $\omega = 41$ Use FFT for evaluation/interpolation in $n \log(n)$
- We want $f \cdot g \mod x^{128} + 1$
 - $x^{128} + 1 = \prod (x \omega^{2i+1})$
 - Chinese Remainder: compute $h \mod x \omega^{2i+1}$ *i.e.* $h(\omega^{2i+1})$
- Evaluating $f(\omega^{2i+1})$
 - $\phi: \sum b_i \cdot x^i \mapsto \sum (b_i \cdot \omega^i) \cdot x^i$
 - $\phi(f)(\omega^{2i}) = f(\omega^{2i+1})$
- FFT₁₂₈($\phi(f \cdot g)$) = FFT₁₂₈($\phi(f)$) × FFT₁₂₈($\phi(g)$)

G. Leurent ()

SPRING

FSE 2014 7 / 16

SPRINO		Implementation 0000
	Product in the ring R_{257}	
Fast	<i>polynomial product</i> $h = f \cdot g \mod x^{128} + 1$	
1	Evaluate f and g : $f_i = f(x_i)$, $g_i = g(x_i)$ Multiply values coefficients-wise	(<mark>128</mark> points)
3	Interpolate h s.t. $h(x_i) = f_i \times g_i$	(degree <mark>128</mark>)
•	Let ω be a 256-th root of unity, $x_i = \omega^{2i+1}$, Use FFT for evaluation/interpolation in $n \log(n)$	ω = 41
• We want $f \cdot g \mod x^{128} + 1$ • $x^{128} + 1 = \prod(x - \omega^{2i+1})$ • Chinese Remainder: compute $h \mod x - \omega^{2i+1}$ <i>i.e.</i> $h(\omega^{2i+1})$ • Evaluating $f(\omega^{2i+1})$ • $\phi : \sum b_i \cdot x^i \mapsto \sum (b_i \cdot \omega^i) \cdot x^i$ • $\phi(f)(\omega^{2i}) = f(\omega^{2i+1})$		

• $FFT_{128}(\phi(f \cdot g)) = FFT_{128}(\phi(f)) \times FFT_{128}(\phi(g))$

S

SPRING

Fweaks

Implementation

Implementation tricks

SPRING PRF

$$F_{a,\vec{s}}(x_1,\ldots,x_k) := S\left(a \cdot \prod_{j=1}^k s_j^{x_j}\right)$$

Use FFT for the subset product

•
$$\prod_{x_j=1} s_j = \phi^{-1} \left(\mathsf{FFT}^{-1} \left(\bigotimes_{x_j=1} \mathsf{FFT}(\phi(s_j)) \right) \right)$$

• Store
$$\tilde{s}_j := FFT(\phi(s_j))$$

(equivalent key)

(coefficients-wise product)

Use counter mode for a stream cipher

Single addition instead of subset-sum

Tweaks

Implementation

Implementation tricks

SPRING PRF

$$F_{a,\vec{s}}(x_1,\ldots,x_k) := S\left(a \cdot \prod_{j=1}^k s_j^{x_j}\right)$$

Use FFT for the subset product

• $\prod_{x_j=1} s_j = \phi^{-1} \left(\mathsf{FFT}^{-1} \left(\bigotimes_{x_j=1} \mathsf{FFT}(\phi(s_j)) \right) \right)$

• Store
$$\widehat{s_{ij}} := \log(\widetilde{s_{ij}}), \widetilde{s_j} := FFT(\phi(s_j))$$

(equivalent key)

(coefficients-wise product)

Use counter mode for a stream cipher

Single addition instead of subset-sum

Tweaks

Implementation

Implementation tricks

SPRING PRF

$$F_{a,\vec{s}}(x_1,\ldots,x_k) := S\left(a \cdot \prod_{j=1}^k s_j^{x_j}\right)$$

Use FFT for the subset product

• $\prod_{x_j=1} s_j = \phi^{-1} \left(\mathsf{FFT}^{-1} \left(\bigotimes_{x_j=1} \mathsf{FFT}(\phi(s_j)) \right) \right)$

• Store
$$\widehat{s_{ij}} := \log(\widetilde{s_{ij}}), \widetilde{s_j} := FFT(\phi(s_j))$$

(equivalent key)

(coefficients-wise product)

- Use counter mode for a stream cipher
 - Single addition instead of subset-sum

G. Leurent ()

SPRING

SPRING ○○○○○○○●	Tweaks 000	Implementation 0000				
SPRING over R_{257} ($p = 257, n = 128$)						
k -bit input x x_1 x_2 x_k		Key <i>s_{ij}</i> 1024(<i>k</i> + 1) bits				
1024-bit state (128 8-bit words)		= Subset sum ∑ _j x _j s _{ij}				
$\mathbb{Z}_{256} \to \mathbb{Z}_{257}$	exp exp exp exp exp exp	$x \mapsto 3^x \mod 257$				
	FFT	FFT over $(\mathbb{Z}_{257})^{128}$				
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$x_i \mapsto x_i \times \omega^{-i}$				
$\mathbb{Z}_{257} \rightarrow \mathbb{Z}_{2}$ 128-bit output	msb msb msb msb msb msb	$x \mapsto \lfloor 2x/257 \rceil$				

G. Leurent ()

SPRING

G. Leurent ()

Tweaks to the construction

Problems because of the small parameters

Polynomial are non-inversible with high probability

- Product in a subspace
- Use only units for the key elements

2 Rounding from \mathbb{Z}_{257} has a bias 1/257

- Output bits biased
- Combine bits to reduce bias: SPRING-BCH
- ▶ Or use Z₅₁₄: SPRING-CRT

Tweaks to the construction

Problems because of the small parameters

Polynomial are non-inversible with high probability

- Product in a subspace
- Use only units for the key elements

2 Rounding from \mathbb{Z}_{257} has a bias 1/257

- Output bits biased
- Combine bits to reduce bias: SPRING-BCH
- ▶ Or use Z₅₁₄: SPRING-CRT

Tweaks to the construction

Problems because of the small parameters

Polynomial are non-inversible with high probability

- Product in a subspace
- Use only units for the key elements
- 2 Rounding from \mathbb{Z}_{257} has a bias 1/257
 - Output bits biased
 - Combine bits to reduce bias: SPRING-BCH
 - ► Or use Z₅₁₄: SPRING-CRT

Tweaks to the construction

Problems because of the small parameters

Polynomial are non-inversible with high probability

- Product in a subspace
- Use only units for the key elements

2 Rounding from \mathbb{Z}_{257} has a bias 1/257

- Output bits biased
- Combine bits to reduce bias: SPRING-BCH
- ► Or use Z₅₁₄: SPRING-CRT

SPRING	

Tweaks ○●○ Implementation 0000

SPRING-BCH

- Reduce the bias by combining output bits
 - Piling-up lemma: $bias(a \oplus b) = bias(a) \cdot bias(b)$
- Multiply with the transpose of the generating matrix of a code
 - Syndrome for the dual code
 - Any linear combination of output bits is the sum of *d* biased bits
 - Bias reduced exponentially in d
- We use an extended BCH code
 - Efficient
 - Best known distance
- Efficiency loss: only 64 output bits

Tweaks ○○●

SPRING-CRT

- Use the ring $R_{514} = \mathbb{Z}_{514}[X]/(X^n + 1)$
 - Unbiased rounding from \mathbb{Z}_{514}
- Chinese Remainder decomposition: $R_{514} \cong R_{257} \times R_2$
 - Compute modulo 257 and modulo 2, combine outputs
- Computation in R₂:
 - Efficient algorithms for subset-product in the paper
 - In counter mode: single multiplication using PCLMUL, or tables

SPRING	

Implementation •000

Implementation

- Implementation using SIMD instructions
 - Compute operations in parallel on vector of data
 - SSE2 on Intel/AMD x86: desktop (Core) and embedded (Atom)
 - NEON on ARM: embedded CPU (Cortex A in smartphones, tablets)
- Subset sum optimized with precomputed tables
 - 2-bit inputs: $[0, s_0, s_1, s_0 + s_1]$
 - 8-bit inputs: 256 entries
- Multiplication in R₂ using PCLMUL instruction (if available), or precomputed tables
- Bottleneck is FFT

FFT implementation tricks

- Reuse efficient FFT from the SIMD hash function
- Decompose FFT as a two-dimensional FFT
 - Parallel FFT on lines and columns
- Elements in \mathbb{Z}_{257} as 16-bit words
- Partial reduction mod257 with (x&256) (x>>8)
 - Output in [-127, 383]
- Multiplication in \mathbb{Z}_{257} using 16-bit signed multiplication
 - Reduce operands to [-128, 128] beforehand

SPRING	
)

Implementation

Performance

- 20-30 cycle/byte on Core i7 using SSE
 - Slow for a stream cipher, fast enough for practical use
- SPRING-CRT-CTR is about 4.5 times slower than AES-CTR
 - Excluding hardware AES instructions
 - Same ratio on a range of architectures

	SPRING-BCH		SPRING-CRT		AES-CTR	
	Single	CTR	Single	CTR	AES-NI	AES-NI
ARM Cortex A15	220	170	250	77	17.8	N/A
Atom	247	137	235	76	17	N/A
Core i7 Nehalem	74	60	76	29.5	6.9	N/A
Core i7 Ivy Bridge	60	46	62	23.5	5.4	1.3

SPRING	

Implementation

Conclusion

Spring: Subset Product with Rounding over a ring

- Strong algebraic structure
 - Simple design
 - Subset sum, table lookup, FFT, table lookup with small output
 - Large linear part good for masking, MPC
- Based on a design with security reduction
 - Security reduction does not apply with small parameters
 - Cryptanalysis is needed to evaluate the security
 - Expected security: about 128 bit
- High parallelism
 - Reasonable performances with vector instructions
 - Good performances in hardware?

Pseudo-code for SPRING

Implementation

Key:
$$(\widehat{a_i})_{i=0}^{127}, (\widehat{s_{ij}})_{i=0}^{127} \stackrel{k-1}{_{j=0}} \in \mathbb{Z}_{256}$$

Input: $x_1, x_2, \dots x_k \in \{0, 1\}$
1: for $0 \le i < k$ do
2: $u_i \leftarrow \widehat{a_i} + \sum_j x_j \widehat{s_{ij}} \mod 256$
3: $u_i \leftarrow 3^{u_i} \mod 257$
4: $\overrightarrow{u} \leftarrow \text{FFT}_{128}^{-1}(\overrightarrow{u})$
5: for $0 \le i < k$ do
6: $u_i \leftarrow u_i \cdot \omega^{-i} \mod 257$
7: $y_i \leftarrow \lfloor 2 \cdot u_i / 257 \rfloor$
8: return \overrightarrow{y}