SPRING

Fast Pseudorandom Functions from Rounded Ring Products

Abhishek Banerjee ${ }^{1}$ Hai Brenner ${ }^{2}$ Gaëtan Leurent ${ }^{3}$ Chris Peikert ${ }^{1}$ Alon Rosen ${ }^{2}$

${ }^{1}$ Georgia Institute of Technology
${ }^{2}$ IDC Herzliya
${ }^{3}$ UCL \& Inria
FSE 2014

Motivation

Public key

- Strong algebraic structure
- Security reduction
- Slow

Public key
- Strong algebraic
structure
- Security reduction
- Slow

- Can we have an efficient design with strong algebraic structure?
- Security reduction from a well-understood problem?
- Extra features?
- Previous examples: SWIFFT, FSB, Lapin, HB family

Motivation

Bridging the gap

- Can we have an efficient design with strong algebraic structure?
- Security reduction from a well-understood problem?
- Extra features?
- Previous examples: SWIFFT, FSB, Lapin, HB family

SPRING construction

Subset Product with Rounding over a ring

$$
F_{\mathrm{a}, \vec{s}}\left(x_{1}, \ldots, x_{k}\right):=S\left(a \cdot \prod_{j=1}^{k} s_{j}^{x_{j}}\right)
$$

- Lattice-based PRF
- Polynomial ring $R_{p}=\mathbb{Z}_{p}[X] /\left(X^{n}+1\right)$
- Key: $a,\left(s_{i}\right)_{i=1}^{k} \in R_{p}$
- Rounding function S
- e.g. MSB of each polynomial coefficient

SPRING security

- Based on the Ring-Learning With Errors assumption
- Secret polynomial $s \in R_{p}$,

$$
R_{p}=\mathbb{Z}_{p}[X] /\left(X^{n}+1\right)
$$

- Distinguish ($a_{i}, a_{i} \cdot s+e_{i}$) from uniform
- Reduction to worst-case ideal lattice problems
- Deterministic version: Ring-Learning With Rounding assumption
- Secret polynomial $s \in R_{p}$
- Distinguish ($a_{i},\left\lfloor a_{i} \cdot s\right\rceil$) from uniform
- Rounding removes information, like adding noise
- Two SPRING outputs gives something similar to an LWR sample
\square
- Secret polynomials s, t
- Output ($\lfloor t\rangle,\lfloor t \cdot s 7$)

SPRING security

- Based on the Ring-Learning With Errors assumption
- Secret polynomial $s \in R_{p}$,

$$
R_{p}=\mathbb{Z}_{p}[X] /\left(X^{n}+1\right)
$$

- Distinguish ($a_{i}, a_{i} \cdot s+e_{i}$) from uniform
- Reduction to worst-case ideal lattice problems
- Deterministic version: Ring-Learning With Rounding assumption
- Secret polynomial $s \in R_{p}$
- Distinguish ($a_{i},\left\lfloor a_{i} \cdot s\right\rceil$) from uniform
- Rounding removes information, like adding noise
- Two SPRING outputs gives something similar to an LWR sample
- $F_{a, \vec{s}}\left(x_{1}, \ldots, x_{k}\right):=S\left(a \cdot \prod_{j=1}^{k} s_{j}^{x_{j}}\right)$
- Secret polynomials s, t
- Output ($\lfloor t\rceil,\lfloor t \cdot s\rceil)$

From provable security to efficiency

- Security reduction require huge parameters
- What happens when we use small parameters?
- Security reduction not applicable as such
- Guideline towards reasonable constructions (mode of operation?)
- Bias can appear (was negligible with large parameters)
- Concrete security evaluation needed

Choice of ring

SPRING

$$
F_{a, \bar{s}}\left(x_{1}, \ldots, x_{k}\right):=S\left(a \cdot \prod_{j=1}^{k} s_{j}^{x_{j}}\right) \quad \text { over } R_{p}=\mathbb{Z}_{p}[X] /\left(X^{n}+1\right)
$$

- Select parameters with fast polynomial product

1 Polynomial product very efficient using FFT algorithm
2 Arithmetic $\bmod 2^{i}+1$ is efficient in software

- Problem was studied for SWIFFT
- Use $p=257, n=128$

Product in the ring R_{257}

Fast polynomial product $h=f \cdot g$

1 Evaluate f and $g: f_{i}=f\left(x_{i}\right), g_{i}=g\left(x_{i}\right)$
2 Multiply values coefficients-wise
3 Interpolate h s.t. $h\left(x_{i}\right)=f_{i} \times g_{i}$
Let ω be a 256-th root of unity, $x_{i}=\omega^{i}$, Use FFT for evaluation/interpolation in $n \log (n)$

Product in the ring R_{257}

Fast polynomial product $h=f \cdot g$
1 Evaluate f and $g: f_{i}=f\left(x_{i}\right), g_{i}=g\left(x_{i}\right)$
2 Multiply values coefficients-wise
3 Interpolate h s.t. $h\left(x_{i}\right)=f_{i} \times g_{i}$

- Let ω be a 256-th root of unity, $x_{i}=\omega^{i}$, Use FFT for evaluation/interpolation in $n \log (n)$
- We want $f \cdot g \bmod x^{128}+1$
$\quad x^{128}+1=\Pi\left(x-\omega^{2 i+1}\right)$
- Evaluating $f\left(\omega^{2 i+1}\right)$

Product in the ring R_{257}

Fast polynomial product $h=f \cdot g$
1 Evaluate f and $g: f_{i}=f\left(x_{i}\right), g_{i}=g\left(x_{i}\right)$
(256 points)
2 Multiply values coefficients-wise
3 Interpolate h s.t. $h\left(x_{i}\right)=f_{i} \times g_{i}$
(degree 256)

- Let ω be a 256-th root of unity, $x_{i}=\omega^{i}$, $\omega=41$ Use FFT for evaluation/interpolation in $n \log (n)$
- We want $f \cdot g \bmod x^{128}+1$
- $x^{128}+1=\Pi\left(x-\omega^{2 i+1}\right)$
- Chinese Remainder: compute $h \bmod x-\omega^{2 i+1}$ i.e. $h\left(\omega^{2 i+1}\right)$

Product in the ring R_{257}

Fast polynomial product $h=f \cdot g \bmod x^{128}+1$
1 Evaluate f and $g: f_{i}=f\left(x_{i}\right), g_{i}=g\left(x_{i}\right)$
(128 points)
2 Multiply values coefficients-wise
3 Interpolate h s.t. $h\left(x_{i}\right)=f_{i} \times g_{i}$
(degree 128)

- Let ω be a 256-th root of unity, $x_{i}=\omega^{2 i+1}$, $\omega=41$ Use FFT for evaluation/interpolation in $n \log (n)$
- We want $f \cdot g \bmod x^{128}+1$
- $x^{128}+1=\Pi\left(x-\omega^{2 i+1}\right)$
- Chinese Remainder: compute $h \bmod x-\omega^{2 i+1}$ i.e. $h\left(\omega^{2 i+1}\right)$
- Evaluating $f\left(\omega^{2 i+1}\right)$
- $\phi: \sum b_{i} \cdot x^{i} \mapsto \sum\left(b_{i} \cdot \omega^{i}\right) \cdot x^{i}$
- $\phi(f)\left(\omega^{2 i}\right)=f\left(\omega^{2 i+1}\right)$
- $\mathrm{FFT}_{128}(\phi(f \cdot g))=\mathrm{FFT}_{128}(\phi(f)) \times \mathrm{FFT}_{128}(\phi(g)) \quad$ (coeff.-wise \times)

Implementation tricks

SPRING PRF

$$
F_{a, \vec{s}}\left(x_{1}, \ldots, x_{k}\right):=S\left(a \cdot \prod_{j=1}^{k} s_{j}^{x_{j}}\right)
$$

- Use FFT for the subset product
- $\Pi_{x_{j}=1} s_{j}=\phi^{-1}\left(\operatorname{FFT}^{-1}\left(X_{x_{j}=1} \operatorname{FFT}\left(\phi\left(s_{j}\right)\right)\right)\right)$
- Store $\tilde{s}_{j}:=\operatorname{FFT}\left(\phi\left(s_{j}\right)\right)$ (equivalent key)
- $\prod_{x_{j}=1} s_{j}=\phi^{-1}\left(\mathrm{FFT}^{-1}\left(X_{x_{j}=1} \tilde{s}_{j}\right)\right)$ (coefficients-wise product)

Implementation tricks

SPRING PRF

$$
F_{a, \vec{s}}\left(x_{1}, \ldots, x_{k}\right):=S\left(a \cdot \prod_{j=1}^{k} s_{j}^{x_{j}}\right)
$$

- Use FFT for the subset product
- $\Pi_{x_{j}=1} s_{j}=\phi^{-1}\left(\operatorname{FFT}^{-1}\left(X_{x_{j}=1} \operatorname{FFT}\left(\phi\left(s_{j}\right)\right)\right)\right)$
- Store $\widehat{s_{i j}}:=\log \left(\widetilde{s_{i j}}\right), \tilde{s}_{j}:=\operatorname{FFT}\left(\phi\left(s_{j}\right)\right)$
- $\Pi_{x_{j}=1} s_{j}=\phi^{-1}\left(\operatorname{FFT}^{-1}\left(\exp \left(\Sigma_{x_{j}=1} \widehat{s_{j}}\right)\right)\right)$

Implementation tricks

SPRING PRF

$$
F_{a, \vec{s}}\left(x_{1}, \ldots, x_{k}\right):=S\left(a \cdot \prod_{j=1}^{k} s_{j}^{x_{j}}\right)
$$

- Use FFT for the subset product
- $\Pi_{x_{j}=1} s_{j}=\phi^{-1}\left(\operatorname{FFT}^{-1}\left(X_{x_{j}=1} \operatorname{FFT}\left(\phi\left(s_{j}\right)\right)\right)\right)$
- Store $\widehat{s_{i j}}:=\log \left(\widetilde{s_{i j}}\right), \tilde{s}_{j}:=\operatorname{FFT}\left(\phi\left(s_{j}\right)\right)$
(equivalent key)
- $\Pi_{x_{j}=1} s_{j}=\phi^{-1}\left(\operatorname{FFT}^{-1}\left(\exp \left(\Sigma_{x_{j}=1} \widehat{s_{j}}\right)\right)\right)$
- Use counter mode for a stream cipher
- Single addition instead of subset-sum

SPRING over $R_{257}(p=257, n=128)$

Key $s_{i j}$
1024(k+1) bits

Subset sum
1024-bit state (128 8-bit words)

$\mathbb{Z}_{256} \rightarrow \mathbb{Z}_{257}$

SPRING over $R_{257}(p=257, n=128)$

SPRING over $R_{257}(p=257, n=128)$

Key $s_{i j}$
1024(k+1) bits

Subset sum
1024-bit state
(128 8-bit words)

$\sum_{j} x_{j} s_{i j}$
$\mathbb{Z}_{256} \rightarrow \mathbb{Z}_{257}$

$x \mapsto 3^{x} \bmod 257$

FFT over
$\left(\mathbb{Z}_{257}\right)^{128}$

ω^{-0}	ω^{-1}	ω^{-2}	ω^{-3}	ω^{-4}	ω^{-5}

$x_{i} \mapsto x_{i} \times \omega^{-i}$
$\mathbb{Z}_{257} \rightarrow \mathbb{Z}_{2}$

msb	msb	msb	msb	msb	msb

$x \mapsto\lfloor 2 x / 2571$
128-bit output

Tweaks to the construction

Problems because of the small parameters
1 Polynomial are non-inversible with high probability

- Product in a subspace
* Use only units for the key elements

2 Rounding from \mathbb{Z}_{257} has a bias $1 / 257$

- Output bits biased

Tweaks to the construction

Problems because of the small parameters
1 Polynomial are non-inversible with high probability

- Product in a subspace
- Use only units for the key elements

2 Rounding from \mathbb{Z}_{257} has a bias $1 / 257$

- Output bits biased

Tweaks to the construction

Problems because of the small parameters

1 Polynomial are non-inversible with high probability

- Product in a subspace
- Use only units for the key elements

2 Rounding from \mathbb{Z}_{257} has a bias $1 / 257$

- Output bits biased
- Or use \mathbb{Z}_{514} : SPRING-CRT

Tweaks to the construction

Problems because of the small parameters

1 Polynomial are non-inversible with high probability

- Product in a subspace
- Use only units for the key elements

2 Rounding from \mathbb{Z}_{257} has a bias $1 / 257$

- Output bits biased
- Combine bits to reduce bias: SPRING-BCH
- Or use \mathbb{Z}_{514} : SPRING-CRT

SPRING-BCH

- Reduce the bias by combining output bits
- Piling-up lemma: $\operatorname{bias}(a \oplus b)=\operatorname{bias}(a) \cdot \operatorname{bias}(b)$
- Multiply with the transpose of the generating matrix of a code
- Syndrome for the dual code
- Any linear combination of output bits is the sum of d biased bits
- Bias reduced exponentially in d
- We use an extended BCH code
- Efficient
- Best known distance
- Efficiency loss: only 64 output bits

SPRING-CRT

- Use the ring $R_{514}=\mathbb{Z}_{514}[X] /\left(X^{n}+1\right)$
- Unbiased rounding from \mathbb{Z}_{514}
- Chinese Remainder decomposition: $R_{514} \cong R_{257} \times R_{2}$
- Compute modulo 257 and modulo 2, combine outputs
- Computation in R_{2} :
- Efficient algorithms for subset-product in the paper
- In counter mode: single multiplication using PCLMUL, or tables

Implementation

- Implementation using SIMD instructions
- Compute operations in parallel on vector of data
- SSE2 on Intel/AMD x86: desktop (Core) and embedded (Atom)
- NEON on ARM: embedded CPU (Cortex A in smartphones, tablets)
- Subset sum optimized with precomputed tables
- 2-bit inputs: $\left[0, s_{0}, s_{1}, s_{0}+s_{1}\right]$
- 8-bit inputs: 256 entries
- Multiplication in R_{2} using PCLMUL instruction (if available), or precomputed tables
- Bottleneck is FFT

FFT implementation tricks

- Reuse efficient FFT from the SIMD hash function
- Decompose FFT as a two-dimensional FFT
- Parallel FFT on lines and columns
- Elements in \mathbb{Z}_{257} as 16-bit words
- Partial reduction mod257 with (x\&256) - (x>>8)
- Output in $[-127,383]$
- Multiplication in \mathbb{Z}_{257} using 16-bit signed multiplication
- Reduce operands to $[-128,128]$ beforehand

Performance

- 20-30 cycle/byte on Core i7 using SSE
- Slow for a stream cipher, fast enough for practical use
- SPRING-CRT-CTR is about 4.5 times slower than AES-CTR
- Excluding hardware AES instructions
- Same ratio on a range of architectures

	SPRING-BCH		SPRING-CRT		AES-CTR	
	Single	CTR	Single	CTR	AESAIT	AES-NI
ARM Cortex A15	220	170	250	77	17.8	N/A
Atom	247	137	235	76	17	N/A
Core i7 Nehalem	74	60	76	29.5	6.9	N/A
Core i7 Ivy Bridge	60	46	62	23.5	5.4	1.3

Conclusion

Spring: Subset Product with Rounding over a ring

- Strong algebraic structure
- Simple design
- Subset sum, table lookup, FFT, table lookup with small output
- Large linear part good for masking, MPC
- Based on a design with security reduction
- Security reduction does not apply with small parameters
- Cryptanalysis is needed to evaluate the security
- Expected security: about 128 bit
- High parallelism
- Reasonable performances with vector instructions
- Good performances in hardware?

Pseudo-code for SPRING

Implementation

Key: $\left(\widehat{a}_{i}\right)_{i=0}^{127},\left(\widehat{s_{i j}}\right)_{i=0}^{127} \underset{j=0}{k-1} \in \mathbb{Z}_{256}$
Input: $x_{1}, x_{2}, \ldots x_{k} \in\{0,1\}$
1: for $0 \leq i<k$ do
2: $\quad u_{i} \leftarrow \widehat{a_{i}}+\sum_{j} x_{j} \widehat{s_{i j}} \bmod 256$
3: $\quad u_{i} \leftarrow 3^{u_{i}} \bmod 257$
4: $\vec{u} \leftarrow \mathrm{FFT}_{128}^{-1}(\vec{u})$
5: for $0 \leq i<k$ do
6: $\quad u_{i} \leftarrow u_{i} \cdot \omega^{-i} \bmod 257$
7: $\quad y_{i} \leftarrow\left\lfloor 2 \cdot u_{i} / 257\right\rceil$
8: return \vec{y}

