Low weight polynomials in crypto

Thomas Johansson

Dept of EIT,
Lund University,
Sweden

FSE 2014

Contents

- PART I: Applications of low weight polynomials in crypto

1 Fast correlation attacks (cryptanalysis)
2 TCHo(design)
3 MDPC (design)

- PART II: How to find a low weight multiple of a polynomial

1 Weight $3,4,5$ and finding all existing multiples
2 Larger weight and finding all existing multiples

Problem

Problem: Low-Weight Polynomial Multiple (LWPM)
Given a polynomial $P(x) \in \mathbb{F}_{2}[x]$ of degree d_{P}.
Find all multiples of $P(x)$ of degree $\leq d$ (if such exists) with w nonzero coefficients.

I. 1 Correlation attacks on stream ciphers

- The keystream generator contains one or several LFSRs.
- Observed keystream sequence $z_{1}, z_{2}, \ldots, z_{N}$.

Correlation attacks

A nonlinear combining generator

Correlation attacks

KEY GENERATOR

LFSR $\rightarrow u_{i}$

- A correlation attack is possible if $P\left(z_{i}=u_{i}\right) \neq 0.5$. LFSR BSC

Meier-Staffelbach original approach

- The feedback polynomial

$$
g(x)=1+g_{1} x+g_{2} x^{2}+\ldots+x^{\prime}
$$

- Recurrence relation

$$
u_{n}=g_{1} u_{n-1}+g_{2} u_{n-2}+\ldots+u_{n-1}
$$

- Assume a low weight of $g(x)$, weight w.
- We get in this way w different low weight parity check equations for u_{n}.

Correlation attacks

Finding more low weight parity checks

- Any multiple of $g(x)$ gives a recurrence relation.
- Use $g(x)^{j}=g\left(x^{j}\right)$ for $j=2^{i}$,
- Create new polynomials by

$$
g_{k+1}(x)=g_{k}(x)^{2}, \quad k=1,2, \ldots
$$

- This squaring is continued until the degree of $g_{k}(x)$ is greater than the length N of the observed keystream.
- Each $g_{k}(x)$ is of weight w and hence each gives w new parity check equations for a fixed position u_{n}.

A simple distinguisher

- $z_{n}=u_{n}+e_{n}, n=1,2, \ldots$
- $\operatorname{Pr}\left(e_{n}=0\right)=1-p=\frac{1}{2}(1+\epsilon)$.
- Recurrence relations of weight w,

$$
u_{n}+g_{1} u_{n-1}+g_{2} u_{n-2}+\ldots+u_{n-I}=0
$$

- Form

$$
S_{n}=z_{n}+g_{1} z_{n-1}+g_{2} z_{n-2}+\ldots+z_{n-1} .
$$

- Verify that
$P\left(S_{n}=0\right)=P\left(e_{n}+g_{1} e_{n-1}+g_{2} e_{n-2}+\ldots+e_{n-I}=0\right)=1 / 2+\epsilon^{w}$.
- Collect $1 / \epsilon^{2 w}$ such samples to distinguish $z_{1}, z_{2}, \ldots, z_{N}$ from a random sequence.

Correlation attacks

LFSR

 BSC

- General case: $g(x)$ is not of low weight.
- How can we attack in this case? One answer: Find a low weight multiple of $g(x)$.
- How do we find a multiple of $g(x)$ of weight $3,4,5$?
- Example of an instance: If length of $\mathrm{LFSR}=90$, length of received sequence $N=2^{33}$, what is the cost of finding a weight $w=4$ multiple of $g(x)$?
- TCHo is a public-key cryptosystem based on the low weight polynomial multiple problem (Aumasson, Finiasz, Meier, Vaudenay, 2006-2007).
- Public key: polynomial $P(x)$,
- Secret key: a multiple $K(x)=q(x) P(x)$, where $w_{H}(K(x))=w$ is low.

TCHo, encryption

- $\mathrm{G}_{\text {rep }}$, generator matrix of a repetition code of length n.
- Plaintext $\mathbf{m} \in \mathbb{F}_{2}^{k}$.
- Generate a random string $\mathbf{r}=\left[\begin{array}{llll}r_{0} & r_{1} & \cdots & r_{n-1}\end{array}\right]$ with bias $\operatorname{Pr}\left[r_{i}=0\right]=\frac{1}{2}(1+\gamma)$.
- Generate an LFSR sequence \mathbf{p} with feedback polynomial $P(x)$ and a random starting state.

Ciphertext generated as

$$
\mathbf{c}=\mathbf{m} \mathbf{G}_{\mathrm{rep}}+\mathbf{r}+\mathbf{p} .
$$

TCHo, decryption

$$
\mathbf{M}=\left[\begin{array}{ccccccc}
k_{0} & k_{1} & \cdots & k_{d_{k}} & & & \\
& k_{0} & k_{1} & \cdots & k_{d_{k}} & & \\
& & \ddots & \ddots & & \ddots & \\
& & & k_{0} & k_{1} & \cdots & k_{d_{k}}
\end{array}\right]
$$

$P(x)$ divides $K(x)$, so $\mathrm{pM}^{\top}=\mathbf{0}$.
Compute $\mathbf{t}=\mathbf{c} \mathbf{M}^{\top}$.
$\mathbf{t}=\left(\mathbf{m} G_{\text {rep }}+\mathbf{r}+\mathbf{p}\right) \mathbf{M}^{\top}=\mathbf{m} G_{\text {rep }} M^{\top}+\mathbf{r} \mathbf{M}^{\top}+\mathbf{p} \mathbf{M}^{\top}=\mathbf{m G}_{\text {rep }} \mathbf{M}^{\top}+\mathbf{r} \mathbf{M}^{\top}$.
Each bit in \mathbf{r} was γ-biased. $K(x)$ has weight w and consequently, each element in $\mathbf{r M}^{\top}$ will be γ^{w}-biased.
Majority decision decoding can be used to decode

$$
\mathbf{t}=\mathbf{m}\left(\mathbf{G}_{\text {rep }} \mathbf{M}^{\top}\right)+\mathbf{r} \mathbf{M}^{\top} .
$$

Parameters TCHo

Example of an instance:

- $K(x)$ of degree $d_{K}=44677$ and weight $w=25$,
- Known polynomial $P(x)$ of degree $d_{P}=4433$.
- How do we find a weight 25 multiple of $P(x)$ of degree 44677 ?

I. 3 The McEliece PKC using QC-MDPC codes

- Public-key cryptosystem (Misoczki, Tillich, Sendrier, Barreto)
- Secret key:

$$
H=\left(\begin{array}{llll}
H_{0} & H_{1} & \cdots & H_{n_{0}-1}
\end{array}\right),
$$

where each H_{i} is a circulant $r \times r$ matrix with weight w_{i} in each row and with $w=\sum w_{i}$.

- Public key:

$$
G=\left(\begin{array}{ll}
1 & P
\end{array}\right),
$$

where

$$
P=\left(\begin{array}{c}
P_{0} \\
P_{1} \\
\vdots \\
P_{n_{0}-2}
\end{array}\right)=\left(\begin{array}{c}
\left(H_{n_{0}-1}^{-1} H_{0}\right)^{\top} \\
\left(H_{n_{0}-1}^{-1} H_{1}\right)^{\top} \\
\vdots \\
\left(H_{n_{0}-1}^{-1} H_{n_{0}-2}\right)^{\top}
\end{array}\right) .
$$

The McEliece PKC using QC-MDPC codes

- $\mathbf{m} \in \mathbb{F}_{2}^{(n-r)}$ plaintext. Multiply \mathbf{m} with the public key G and add errors within the correction radius t of the code, i.e.,

$$
\mathbf{c}=\mathbf{m} G+\mathbf{e},
$$

where $w_{H}(\mathbf{e}) \leq t$.

- Decoding: Given the secret low-weight parity check matrix H, a low-complexity decoding procedure is used to obtain the plaintext m.

The McEliece PKC using QC-MDPC codes

- The scheme can be rewritten in polynomial form
- For $n_{0}=2$: Let $h_{1}(x)$ represent H_{1} and $h_{0}(x)$ represent H_{0}.
- Known P_{0} is represented by $P(x)$, we have

$$
\begin{equation*}
h_{1}(x) P(x) \equiv h_{0}(x) \bmod \left(x^{r}+1\right) \tag{1}
\end{equation*}
$$

The McEliece PKC using QC-MDPC codes

Example of an instance:

- $r=$ degree of $h_{i}(x)=4801$. Weight $w_{H}\left(h_{0}(x)\right)=w_{H}\left(h_{1}(x)\right)=45$.
- For given $P(x)$ find h_{0} and h_{1} such that

$$
h_{1}(x) P(x) \equiv h_{0}(x) \bmod \left(x^{4801}+1\right)
$$

II.1 Algorithms for finding low weight polynomial multiples

- Many different approaches have been given.
- We are looking for multiples of the type

$$
q(x) P(x)=1+x^{i_{1}}+\ldots+x^{i_{w-1}}
$$

where $i_{j} \leq N$.

- When the algorithm finds expressions like

$$
x^{i_{0}^{\prime}}+x^{i_{1}^{\prime}}+\ldots+x^{i_{w-1}^{\prime}}
$$

it can be shifted to produce a multiple of the desired form.

How large degree is needed?

- $d_{P}=l$
- With $a, b, c, d \leq 2^{1 / 4}$, create $2^{1 / 2}$ polynomials $x^{a}+x^{b}$ $\bmod P(x)$, and equally many $x^{c}+x^{d} \bmod P(x)$. From the birthday paradox, collisions between the lists is expected, yielding $g(x) \mid\left(x^{a}+x^{b}+x^{c}+x^{d}\right)$.
- Golić pointed out that a collision $x^{a}+x^{b}=x^{c}+x^{d}$ $(\bmod P(x))$ also yields $x^{a+\gamma}+x^{b+\gamma}+x^{c+\gamma}+x^{d+\gamma}=0$ $(\bmod P(x))$ for all $\gamma>0$, thus creating additional collisions. But the birthday paradox does not suggest this many collisions.
- For random polynomials, multiples of weight w start showing up at degrees around $\alpha_{t} \cdot 2^{1 /(w-1)}$, where $\alpha_{t} \approx 1$.

Golić's Modified Approach

Golić formulated an algorithm that searches for checks of weights $2 v$ and $2 v+1$

- Create a list of the $\binom{N}{v}$ residues $x^{i_{1}}+\ldots+x^{i_{v}} \bmod P(x)$.
- Sort and look for 0-matches and 1-matches, i.e.,

$$
\left(x^{i_{1}^{1}}+\ldots+x^{i_{v}^{1}}\right)+\left(x^{i_{1}^{2}}+\ldots+x^{i_{v}^{2}}\right)=b \quad(\bmod P(x))
$$

giving rise to a multiple of weight at most $2 v+b$.

- This algorithm requires time and memory about $\binom{N}{v}$.
- If $w=2 v=4$ then we need time and memory about $2^{2 / / 3}$.

Using Zech's Logarithm

- Penzhorn and Kühn
- Create $\mathbb{F}_{2^{\prime}}$ using $P(x)$. Use Zech's logarithm defined from a primitive element $\alpha \in \mathbb{F}_{2^{\prime}}$.
- Zech's logarithm $z(i)$ is defined through

$$
\alpha^{z(i)}=\alpha^{i}+1
$$

- Multiples of weight 3 can be found by observing that $x^{z(i)}+x^{i}+1$ is a multiple of $g(x)$. Therefore, logarithms $z(i)$ for $i=1,2, \ldots, T$ are computed until $z(i) \leq N$ is found.
- Logarithms can be computed rather efficiently, using e.g. a method by Coppersmith. Aiming at an overall success probability of $1-e^{-1}$, one might e.g., use $N=2^{1 / 2}, T=2^{1 / 2}$.

Using Zech's Logarithm for $w=4$

- Multiples of weight 4 can be found by observing that if (i, j) are found such that $z(i)-z(j)=\delta>0$, then

$$
x^{z(i)}+x^{i}+1+x^{\delta}\left(x^{z(j)}+x^{j}+1\right)=x^{i}+x^{j+\delta}+x^{\delta}+1
$$

because $x^{z(i)}=x^{\delta+z(j)}$. Aiming at $N=2^{I / 3}$ gives $T=2^{I / 3}$, which compares favourably to previous methods.

- Computational complexity: the number of discrete logarithms that must be computed is $2^{1 / 3}$. Table size $T=2^{1 / 3}$.

A new algorithm for $w=4$

(1) Create all $x^{i_{1}} \bmod P(x)$, for $0 \leq i_{1}<2^{d_{P} / 3+\alpha}$ and put $\left(x^{i_{1}} \bmod P(x), i_{1}\right)$ in a table T_{1}. Sort T_{1} according to the residue value.
(2) Create all $x^{i_{1}}+x^{i_{2}} \bmod P(x)$ such that $\operatorname{lsb}_{d_{P} / 3}\left(x^{i_{1}}+x^{i_{2}} \bmod P(x)\right)=0$, for $0 \leq i_{1}<i_{2}<2^{d_{P} / 3+\alpha}$ and put in a table T_{2}. Here $\operatorname{lsb}_{d_{P} / 3}()$ means the $d_{P} / 3$ least significant bits.
This is done by merging the sorted table T_{1} by itself and keeping only residues $x^{i_{1}}+x^{i_{2}} \bmod P(x)$ with the last $d_{P} / 3$ bits all zero. The table T_{2} is sorted according to the residue value.
(3) Merge the sorted table T_{2} with itself keeping only residues $x^{i_{1}}+x^{i_{2}}+x^{i_{3}}+x^{i_{4}}=0 \bmod P(x)$. Output these weight 4 multiples.

Complexity analysis

- Assume $K(x)$ is the multiple of lowest degree, around $d_{P} / 3$.
- The algorithm creates all weight 4 multiples up to degree $2^{d_{P} / 3+\alpha}$, that include two monomials $x^{i_{1}}$ and $x^{i_{2}}$ such that $\operatorname{lsb}_{d_{p} / 3}\left(x^{i_{1}}+x^{i_{2}} \bmod P(x)\right)=0$.
- Any polynomial $x^{i_{1}} K(x)$ is of weight 4 . Since we consider all weight 4 multiples up to degree $2^{d_{p} / 3+\alpha}$ we will consider $2^{d_{P} / 3+\alpha}-2^{d_{P} / 3}$ such weight 4 polynomials, i.e. about $2^{d_{P} / 3}\left(2^{\alpha}-1\right)$ duplicates of $K(x)$.
- As the probability for a single weight 4 polynomial to have the condition $\operatorname{lsb}_{d_{P} / 2}\left(x^{i_{1}}+x^{i_{2}} \bmod P(x)\right)=0$ can be approximated to be around $2^{-d p / 3}$, there will be a large probability that at least one duplicate $x^{i_{1}} K(x)$ will survive in Step 2 in the above algorithm and will be included in the output.

Simulation

Figure: The probability of finding the minimum degree polynomial multiple as a function of algorithm parameter α.

Example, weight 4

Finding the weight 4 multiple with lowest degree

- For $d_{P}=90, N=2^{30}$, the complexity of the classical approach is 2^{60}.
- or solving 2^{30} discrete log instances in $\mathbb{F}_{2^{90}}$.
- Proposed algorithm with $\alpha=3$ yields complexity around 2^{33}, with very low probability of not finding the lowest degree polynomial multiple.

Wagner's Generalized Birthday Problem

- One of several applications
- Each list L_{j} is populated with elements $x^{i} \bmod P(x)$. Finding a set of $v_{j} \in L_{j}$, where $v_{j}=x^{i_{j}} \bmod P(x)$, such that $v_{1}+\ldots+v_{t}=1$ yields the multiple $x^{i_{1}}+\ldots+x^{i_{t}}+1$.
- Problem size $t=2^{x}$: reducing the problem by joining pairs of lists fixing the s least significant bits. Repeat again for remaining lists and fixing the next least significant bits, etc.
- One needs $N \approx 2^{d_{P} /(1+\log t)}$ to expect to find a multiple. The weight will be $t+1$, the degree will be about $2^{d_{P} /(1+\lfloor\log t\rfloor)}$ and the work about $t \cdot 2^{d_{P} /(1+\lfloor\log t\rfloor)}$.
- For $w=5$ we will get a multiple of degree $2^{d_{P} / 3}$ (first weight 5 multiple will appear around degree $2^{d_{P} / 4}$).

II. 2 Low weight multiples with larger weight

- What happens when w is a bit larger?
- Assume we know there is a low weight multiple of degree d.
- The problem can be turned into a coding theory problem.
- Finding a low weight multiple is the same as finding a low weight codeword in a certain code.
- Low weight codewords in a code can be found by decoding algorithms for general codes, in particular information set decoding (ISD) algorithms.

A Coding-theory problem

Problem: Subspace Weight (minimum weight codeword)
With \mathbf{G} being a random $k \times n$ matrix find \mathbf{u} in

$$
\mathbf{v}=\mathbf{u G}
$$

such that $w_{H}(\mathbf{v})=w$.

- Decision problem is $\mathcal{N P}$-complete.

Stern's algorithm

Given: a $k \times n$ matrix G, p, q algorithm parameter 1. Pick a random column permutation π. Compute $\pi(\mathbf{G})$.
2. Make $\pi(\mathbf{G})$ systematic, forming $\hat{\mathbf{G}}$

$\pi(\mathbf{G})$ and $\hat{\mathbf{G}}$ represents the same code $\Longrightarrow \hat{\mathbf{v}}_{\text {min }}$ remains the same.

3 (a) Create all sums $p / 2$ of rows from the upper part of $\hat{\mathbf{G}}$ and put in a list L_{1} indexed by q.
(b) Equivalently, create all sums $p / 2$ of rows from the lower part of $\hat{\mathbf{G}}$ and put in a list L_{2} indexed by q.

4. Merge the two lists L_{1} and L_{2}. A collision means that the q-field is all-zero.
5. If any vector has weight $w-p$ in the remaining positions, output it. If not, repeat 1 . with a new permutation.

Work factor

- The workfactor of one iteration in Stern's algorithm is given by

$$
C=\frac{1}{2}(n-k)^{2}(n+k)+2\binom{k / 2}{p} p j+\binom{k / 2}{p}^{2} p(n-k) / 2^{j-1} .
$$

- q is the probability of success in one iteration.
- Total work factor: C / q

A reduction of LWPM

- Given the polynomial $P(x)$, we want to find a $u(x)$ such that $u(x) \cdot P(x)=K(x)$ where $K(x)$ has w nonzero coefficients.

$$
\begin{aligned}
K(x) & =u(x) \cdot P(x) \\
& =\left(u_{0}+u_{1} x+\cdots u_{d-d_{P}} x^{d-d_{P}}\right) \cdot\left(p_{0}+p_{1} x+p_{d_{P}} x^{d_{P}}\right) \\
& =\left[\begin{array}{llll}
u_{0} & u_{1} & \cdots & u_{d-d_{P}}
\end{array}\right]\left[\begin{array}{c}
P(x) \\
x P(x) \\
\vdots \\
x^{d-d_{P} P(x)}
\end{array}\right]=\mathbf{u G}(x)
\end{aligned}
$$

A reduction of LWPM

- We can represent

$$
\mathbf{G}(x)=\left[\begin{array}{c}
P(x) \\
x P(x) \\
\vdots \\
x^{d-d_{P}} P(x)
\end{array}\right]
$$

as

$$
\mathbf{G}=\left[\begin{array}{lllllll}
p_{0} & p_{1} & \cdots & p_{d_{P}} & & & \\
& p_{0} & p_{1} & \cdots & p_{d_{P}} & & \\
& & \ddots & \ddots & & \ddots & \\
& & & p_{0} & p_{1} & \cdots & p_{d_{P}}
\end{array}\right]
$$

if each column is mapped to each degree of x.

- We can use ISD algorithms on G.

Allowing codeword multiples

G has dimension $k \times n$. The $[n, k]$-code generated by G has one single codeword of weight w, namely K (or $K(x)$).

Idea: The code is 'cyclic', so we can allow shifts of $K(x)$, i.e.

$$
x K(x), x^{2} K(x), \ldots
$$

By adding one row to \mathbf{G},

$$
\mathbf{G}^{\prime}=\left[\begin{array}{l}
\mathbf{G} \\
\mathbf{p}
\end{array}\right]=\left[\begin{array}{llllllll}
p_{0} & p_{1} & \cdots & p_{d_{p}} & & & & \\
& p_{0} & p_{1} & \cdots & p_{d_{p}} & & & \\
& & \ddots & \ddots & & \ddots & & \\
& & & p_{0} & p_{1} & \cdots & p_{d_{p}} & \\
& & & & p_{0} & p_{1} & \cdots & p_{d_{p}}
\end{array}\right]
$$

there are now two codewords of weight w.

Idea: Allowing codeword multiples

G has dimensions $k \times n$. The $[n, k]$-code generated by G has one single codeword of weight w, namely K (or $K(x)$).

Idea: The code is cyclic, so we can allow shifts of $K(x)$, i.e.

$$
x K(x), x^{2} K(x), \ldots
$$

By adding one row to \mathbf{G},

$$
\mathbf{G}^{\prime}=\left[\begin{array}{l}
\mathbf{G} \\
\mathbf{p}
\end{array}\right]=\left[\begin{array}{llllllll}
p_{0} & p_{1} & \cdots & p_{d_{p}} & & & & \\
& p_{0} & p_{1} & \cdots & p_{d_{p}} & & & \\
& & \ddots & \ddots & & \ddots & & \\
& & & p_{0} & p_{1} & \cdots & p_{d_{p}} & \\
& & & & p_{0} & p_{1} & \cdots & p_{d_{p}}
\end{array}\right]
$$

there are now two codewords of weight w.

Allowing codeword multiples

What is the effect?

- ISD algorithms have a complexity that is $\sim \frac{1}{q}$, where q is the probability of success in one iteration.
- If q is small and success events are independent, then y low weight codewords means success prob. $\approx y \cdot q$.
- The dimension k of the code increases with y, but if $k \gg y$ it has little effect on complexity.
- Complexity decreases with increasing y, i.e., $\frac{C}{y \cdot q}$.

Decreasing the weight

We know that the polynomial $K(x)$ has the form:

How can we use that information?

- Should be able to search over $w-2$ unknowns rather than w.
- Less weight leads to lower complexity.

Linear transformation of the code

For any polynomial $P(x)$, there exists a linear map Γ that transforms the code \mathcal{C}_{y} into a new code given by $\mathrm{G}_{y} \Gamma$, such that all weight w codewords corresponding to shifts of $K(x)$ will have weight $w-2$ in the new code.

The result is a $(k+y) \times(n-1)$ matrix

$$
\mathbf{G}^{\prime}=\left[\begin{array}{cccccc}
p_{0} & p_{1} & \cdots & p_{d_{P}} & & \\
& p_{0} & & \vdots & \ddots & \\
& & \ddots & \vdots & & p_{d_{P}} \\
p_{d_{P}} & & & p_{0} & \cdots & p_{d_{P}-1} \\
\vdots & \ddots & & & \ddots & \vdots \\
p_{0} & \cdots & p_{d_{P}} & & & p_{0}
\end{array}\right]
$$

with weight $w-2$ codewords

$$
\left[\begin{array}{c}
K_{1} \\
K_{2} \\
\vdots \\
K_{y}
\end{array}\right]=\left[\begin{array}{cccccc}
0 & k_{1} & \cdots & \cdots & \cdots & k_{d-1} \\
k_{d-1} & 0 & k_{1} & \cdots & \cdots & k_{d-2} \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
k_{d-y} & \cdots & k_{d-1} & 0 & k_{1} & k_{2}
\end{array}\right]
$$

The last step is to simply apply an ISD-algorithm on \mathbf{G}^{\prime}.

Algorithm summary

(1) Build a matrix G from $P(x)$ according to the reduction.
(2) Expand with y shifts of $K(x)$.
(3) Perform weight-reduction.
(4) Apply ISD to find weight $w-2$ codeword

How well does it perform?

Example: TCHo parameters

80-bit security (in terms of key-recovery):

d	d_{P}	w	ISD	New algorithm	Gain	Yopt
24730	12470	67	$2^{85.75}$	$2^{77.65}$	$2^{8.20}$	230
44677	4433	25	$2^{96.47}$	$2^{84.15}$	$2^{12.32}$	250

The numbers refer to bit operations.
Ideally, 2^{6} bit operations per word operation (2 $2^{3.3}$ in toy example implementation).

Coming back to the related problem (QC-MDPC codes)

Example: degree of $h_{i}(x)=4801 . w_{H}\left(h_{0}(x)\right)=w_{H}\left(h_{1}(x)\right)=45$.
For given $P(x)$ find h_{0} and h_{1} such that

$$
h_{1}(x) P(x) \equiv h_{0}(x) \bmod \left(x^{4801}+1\right)
$$

- ISD algorithms can be used to solve this problem.
- We know some improved ways when degree of $h_{i}(x)$ is even.
- Can CRT give improvements?

Conclusions

- Many interesting problems around low weight multiples.
- New primitives could be based on such problems.
T. Johansson, C. Löndahl, "Improved Algorithms for Finding Low-Weight Polynomial Multiples and some cryptographic applications", to appear in Designs, Codes and Cryptography.

