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Problem

Problem: Low-Weight Polynomial Multiple (LWPM)

Given a polynomial P(x) ∈ F2[x ] of degree dP .

Find all multiples of P(x) of degree ≤ d (if such exists) with w
nonzero coefficients.
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I.1 Correlation attacks on stream ciphers
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• The keystream generator contains one or several LFSRs.
• Observed keystream sequence z1, z2, . . . , zN .
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Correlation attacks
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A nonlinear combining generator
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Correlation attacks
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Meier-Staffelbach original approach

• The feedback polynomial

g(x) = 1 + g1x + g2x2 + . . .+ x l .

• Recurrence relation

un = g1un−1 + g2un−2 + . . .+ un−l .

• Assume a low weight of g(x), weight w .
• We get in this way w different low weight parity check
equations for un.
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Correlation attacks

Finding more low weight parity checks
• Any multiple of g(x) gives a recurrence relation.
• Use g(x)j = g(x j) for j = 2i ,
• Create new polynomials by

gk+1(x) = gk(x)2, k = 1, 2, . . . .

• This squaring is continued until the degree of gk(x) is greater
than the length N of the observed keystream.

• Each gk(x) is of weight w and hence each gives w new parity
check equations for a fixed position un.
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A simple distinguisher

• zn = un + en, n = 1, 2, . . ..
• Pr(en = 0) = 1− p = 1

2(1 + ε).
• Recurrence relations of weight w ,

un + g1un−1 + g2un−2 + . . .+ un−l = 0.

• Form
Sn = zn + g1zn−1 + g2zn−2 + . . .+ zn−l .

• Verify that

P(Sn = 0) = P(en+g1en−1+g2en−2+. . .+en−l = 0) = 1/2+εw .

• Collect 1/ε2w such samples to distinguish z1, z2, . . . , zN from a
random sequence.
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Correlation attacks
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• General case: g(x) is not of low weight.
• How can we attack in this case?
One answer: Find a low weight multiple of g(x).

• How do we find a multiple of g(x) of weight 3, 4, 5?
• Example of an instance: If length of LFSR=90, length of
received sequence N = 233, what is the cost of finding a
weight w = 4 multiple of g(x)?
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I.2 TCHo

• TCHo is a public-key cryptosystem based on the low weight
polynomial multiple problem (Aumasson, Finiasz, Meier,
Vaudenay, 2006-2007).

• Public key: polynomial P(x),
• Secret key: a multiple K (x) = q(x)P(x), where

wH(K (x)) = w is low.
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TCHo, encryption

• Grep, generator matrix of a repetition code of length n.
• Plaintext m ∈ Fk

2 .
• Generate a random string r =

[
r0 r1 · · · rn−1

]
with bias

Pr [ri = 0] = 1
2(1 + γ).

• Generate an LFSR sequence p with feedback polynomial P(x)
and a random starting state.

Ciphertext generated as

c = mGrep + r + p.
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TCHo, decryption

M =


k0 k1 · · · kdK

k0 k1 · · · kdK
. . . . . . . . .

k0 k1 · · · kdK

 .
P(x) divides K (x), so pMT = 0.
Compute t = cMT.

t = (mGrep+r+p)MT = mGrepMT+rMT+pMT = mGrepMT+rMT.

Each bit in r was γ-biased. K (x) has weight w and consequently,
each element in rMT will be γw -biased.
Majority decision decoding can be used to decode

t = m (GrepMT) + rMT.
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Parameters TCHo

Example of an instance:
• K (x) of degree dK = 44677 and weight w = 25,
• Known polynomial P(x) of degree dP = 4433.
• How do we find a weight 25 multiple of P(x) of degree 44677?
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I.3 The McEliece PKC using QC-MDPC codes

• Public-key cryptosystem (Misoczki, Tillich, Sendrier, Barreto)
• Secret key:

H =
(
H0 H1 · · · Hn0−1

)
,

where each Hi is a circulant r × r matrix with weight wi in
each row and with w =

∑
wi .

• Public key:
G =

(
I P

)
,

where

P =


P0
P1
...

Pn0−2

 =


(
H−1n0−1H0

)T(
H−1n0−1H1

)T
...(

H−1n0−1Hn0−2
)T

 .
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The McEliece PKC using QC-MDPC codes

• m ∈ F(n−r)
2 plaintext.

Multiply m with the public key G and add errors within the
correction radius t of the code, i.e.,

c = mG + e,

where wH(e) ≤ t.
• Decoding: Given the secret low-weight parity check matrix H,
a low-complexity decoding procedure is used to obtain the
plaintext m.
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The McEliece PKC using QC-MDPC codes

• The scheme can be rewritten in polynomial form
• For n0 = 2: Let h1(x) represent H1 and h0(x) represent H0.
• Known P0 is represented by P(x), we have

h1(x)P(x) ≡ h0(x) mod (x r + 1). (1)
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The McEliece PKC using QC-MDPC codes

Example of an instance:
• r =degree of hi (x) = 4801. Weight

wH(h0(x)) = wH(h1(x)) = 45.
• For given P(x) find h0 and h1 such that

h1(x)P(x) ≡ h0(x) mod (x4801 + 1).
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II.1 Algorithms for finding low weight polynomial multiples

• Many different approaches have been given.
• We are looking for multiples of the type

q(x)P(x) = 1 + x i1 + . . .+ x iw−1 ,

where ij ≤ N.
• When the algorithm finds expressions like

x i ′0 + x i ′1 + . . .+ x i ′w−1

it can be shifted to produce a multiple of the desired form.
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How large degree is needed?

• dP = l
• With a, b, c , d ≤ 2l/4, create 2l/2 polynomials xa + xb

mod P(x), and equally many xc + xd mod P(x). From the
birthday paradox, collisions between the lists is expected,
yielding g(x)|(xa + xb + xc + xd ).

• Golić pointed out that a collision xa + xb = xc + xd

(mod P(x)) also yields xa+γ + xb+γ + xc+γ + xd+γ = 0
(mod P(x)) for all γ > 0, thus creating additional collisions.
But the birthday paradox does not suggest this many collisions.

• For random polynomials, multiples of weight w start showing
up at degrees around αt · 2l/(w−1), where αt ≈ 1.
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Golić’s Modified Approach

Golić formulated an algorithm that searches for checks of weights
2v and 2v + 1
• Create a list of the

(N
v

)
residues x i1 + . . .+ x iv mod P(x).

• Sort and look for 0-matches and 1-matches, i.e.,

(x i11 + . . .+ x i1v ) + (x i21 + . . .+ x i2v ) = b (mod P(x)),

giving rise to a multiple of weight at most 2v + b.
• This algorithm requires time and memory about

(N
v

)
.

• If w = 2v = 4 then we need time and memory about 22l/3.
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Using Zech’s Logarithm

• Penzhorn and Kühn
• Create F2l using P(x). Use Zech’s logarithm defined from a
primitive element α ∈ F2l .

• Zech’s logarithm z(i) is defined through

αz(i) = αi + 1.

• Multiples of weight 3 can be found by observing that
xz(i) + x i + 1 is a multiple of g(x). Therefore, logarithms z(i)
for i = 1, 2, . . . ,T are computed until z(i) ≤ N is found.

• Logarithms can be computed rather efficiently, using e.g. a
method by Coppersmith. Aiming at an overall success
probability of 1− e−1, one might e.g., use N = 2l/2, T = 2l/2.
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Using Zech’s Logarithm for w = 4

• Multiples of weight 4 can be found by observing that if (i , j)
are found such that z(i)− z(j) = δ > 0, then

xz(i) + x i + 1 + xδ(xz(j) + x j + 1) = x i + x j+δ + xδ + 1

because xz(i) = xδ+z(j). Aiming at N = 2l/3 gives T = 2l/3,
which compares favourably to previous methods.

• Computational complexity: the number of discrete logarithms
that must be computed is 2l/3. Table size T = 2l/3.
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A new algorithm for w = 4

1 Create all x i1 mod P(x), for 0 ≤ i1 < 2dP/3+α and put
(x i1 mod P(x), i1) in a table T1. Sort T1 according to the
residue value.

2 Create all x i1 + x i2 mod P(x) such that
lsbdP/3(x i1 + x i2 mod P(x)) = 0, for 0 ≤ i1 < i2 < 2dP/3+α

and put in a table T2. Here lsbdP/3() means the dP/3 least
significant bits.
This is done by merging the sorted table T1 by itself and
keeping only residues x i1 + x i2 mod P(x) with the last dP/3
bits all zero. The table T2 is sorted according to the residue
value.

3 Merge the sorted table T2 with itself keeping only residues
x i1 + x i2 + x i3 + x i4 = 0 mod P(x). Output these weight 4
multiples.
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Complexity analysis

• Assume K (x) is the multiple of lowest degree, around dP/3.
• The algorithm creates all weight 4 multiples up to degree
2dP/3+α, that include two monomials x i1 and x i2 such that
lsbdP/3(x i1 + x i2 mod P(x)) = 0.

• Any polynomial x i1K (x) is of weight 4. Since we consider all
weight 4 multiples up to degree 2dP/3+α we will consider
2dP/3+α − 2dP/3 such weight 4 polynomials, i.e. about
2dP/3(2α − 1) duplicates of K (x).

• As the probability for a single weight 4 polynomial to have the
condition lsbdP/2(x i1 + x i2 mod P(x)) = 0 can be
approximated to be around 2−dP/3, there will be a large
probability that at least one duplicate x i1K (x) will survive in
Step 2 in the above algorithm and will be included in the
output.
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Simulation
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Figure: The probability of finding the minimum degree polynomial
multiple as a function of algorithm parameter α.
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Example, weight 4

Finding the weight 4 multiple with lowest degree
• For dP = 90,N = 230, the complexity of the classical approach
is 260.

• or solving 230 discrete log instances in F290 .
• Proposed algorithm with α = 3 yields complexity around 233,
with very low probability of not finding the lowest degree
polynomial multiple.
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Wagner’s Generalized Birthday Problem

• One of several applications
• Each list Lj is populated with elements x i mod P(x). Finding
a set of vj ∈ Lj , where vj = x ij mod P(x), such that
v1 + . . .+ vt = 1 yields the multiple x i1 + . . .+ x it + 1.

• Problem size t = 2x : reducing the problem by joining pairs of
lists fixing the s least significant bits. Repeat again for
remaining lists and fixing the next least significant bits, etc.

• One needs N ≈ 2dP/(1+log t) to expect to find a multiple. The
weight will be t + 1, the degree will be about 2dP/(1+blog tc)

and the work about t · 2dP/(1+blog tc).
• For w = 5 we will get a multiple of degree 2dP/3 (first weight
5 multiple will appear around degree 2dP/4).
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II.2 Low weight multiples with larger weight

• What happens when w is a bit larger?
• Assume we know there is a low weight multiple of degree d .
• The problem can be turned into a coding theory problem.
• Finding a low weight multiple is the same as finding a low
weight codeword in a certain code.

• Low weight codewords in a code can be found by decoding
algorithms for general codes, in particular information set
decoding (ISD) algorithms.
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A Coding-theory problem

Problem: Subspace Weight (minimum weight codeword)

With G being a random k × n matrix find u in

v = uG

such that wH(v) = w .

• Decision problem is NP-complete.
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Stern’s algorithm

Given: a k × n matrix G, p, q algorithm parameter

1. Pick a random column permutation π. Compute π (G).
2. Make π (G) systematic, forming Ĝ

1

k/2 k/2 q

p/2

π(G) and Ĝ represents the same code
=⇒ v̂min remains the same.
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3 (a) Create all sums p/2 of rows from the upper part of Ĝ and put
in a list L1 indexed by q.

(b) Equivalently, create all sums p/2 of rows from the lower part
of Ĝ and put in a list L2 indexed by q.

1

k/2 k/2 q

p/2

p/2

4. Merge the two lists L1 and L2. A collision means that the
q-field is all-zero.

5. If any vector has weight w − p in the remaining positions,
output it. If not, repeat 1. with a new permutation.
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Work factor

• The workfactor of one iteration in Stern’s algorithm is given by

C =
1
2

(n − k)2(n + k) + 2
(

k/2
p

)
pj +

(
k/2
p

)2

p(n − k)/2j−1.

• q is the probability of success in one iteration.
• Total work factor: C/q
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A reduction of LWPM

• Given the polynomial P(x), we want to find a u(x) such that
u(x) · P(x) = K (x) where K (x) has w nonzero coefficients.

•

K (x) = u(x) · P(x)

= (u0 + u1x + · · · ud−dPxd−dP ) · (p0 + p1x + pdPxdP )

=
[
u0 u1 · · · ud−dP

]


P(x)
xP(x)

...
xd−dPP(x)

 = uG(x)
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A reduction of LWPM

• We can represent

G(x) =


P(x)
xP(x)

...
xd−dPP(x)


as

G =


p0 p1 · · · pdP

p0 p1 · · · pdP
. . . . . . . . .

p0 p1 · · · pdP

 ,
if each column is mapped to each degree of x .

• We can use ISD algorithms on G.
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Allowing codeword multiples

G has dimension k × n. The [n, k]-code generated by G has one
single codeword of weight w , namely K (or K (x)).

Idea: The code is ’cyclic’, so we can allow shifts of K (x), i.e.

xK (x), x2K (x), ...

By adding one row to G,

G′ =

[
G
p

]
=


p0 p1 · · · pdP

p0 p1 · · · pdP
. . . . . . . . .

p0 p1 · · · pdP

p0 p1 · · · pdP

 ,

there are now two codewords of weight w .
Thomas Johansson Low weight polynomials in crypto



Idea: Allowing codeword multiples

G has dimensions k × n. The [n, k]-code generated by G has one
single codeword of weight w , namely K (or K (x)).

Idea: The code is cyclic, so we can allow shifts of K (x), i.e.
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Allowing codeword multiples

What is the effect?

• ISD algorithms have a complexity that is ∼ 1
q , where q is the

probability of success in one iteration.
• If q is small and success events are independent, then y low
weight codewords means success prob. ≈ y · q.

• The dimension k of the code increases with y , but if k >> y
it has little effect on complexity.

• Complexity decreases with increasing y , i.e., C
y ·q .
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Decreasing the weight

We know that the polynomial K (x) has the form:

1 + · · · · · · · · · · · · · · · · · · · · ·︸ ︷︷ ︸
w − 2 nonzero coefficients

+xd

How can we use that information?
• Should be able to search over w − 2 unknowns rather than w .
• Less weight leads to lower complexity.

Thomas Johansson Low weight polynomials in crypto



Linear transformation of the code

For any polynomial P(x), there exists a linear map Γ that
transforms the code Cy into a new code given by Gy Γ, such that all
weight w codewords corresponding to shifts of K (x) will have
weight w − 2 in the new code.
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The result is a (k + y)× (n − 1) matrix

G′ =



p0 p1 · · · pdP

p0
...

. . .
. . .

... pdP

pdP p0 · · · pdP−1
...

. . . . . .
...

p0 · · · pdP p0


with weight w − 2 codewords

K1
K2
...

Ky

 =


0 k1 · · · · · · · · · kd−1

kd−1 0 k1 · · · · · · kd−2
...

. . . . . . . . . . . .
...

kd−y · · · kd−1 0 k1 k2


The last step is to simply apply an ISD-algorithm on G′.
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Algorithm summary

1 Build a matrix G from P(x) according to the reduction.
2 Expand with y shifts of K (x).
3 Perform weight-reduction.
4 Apply ISD to find weight w − 2 codeword

How well does it perform?
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Example: TCHo parameters

80-bit security (in terms of key-recovery):

d dP w
24730 12470 67
44677 4433 25

ISD New algorithm Gain
285.75 277.65 28.20

296.47 284.15 212.32

yopt

230
250

The numbers refer to bit operations.

Ideally, 26 bit operations per word operation (23.3 in toy example
implementation).
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Coming back to the related problem (QC-MDPC codes)

Example: degree of hi (x) = 4801. wH(h0(x)) = wH(h1(x)) = 45.

For given P(x) find h0 and h1 such that

h1(x)P(x) ≡ h0(x) mod (x4801 + 1).

• ISD algorithms can be used to solve this problem.
• We know some improved ways when degree of hi (x) is even.
• Can CRT give improvements?
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Conclusions

• Many interesting problems around low weight multiples.
• New primitives could be based on such problems.

T. Johansson, C. Löndahl, ”Improved Algorithms for Finding Low-Weight
Polynomial Multiples and some cryptographic applications”, to appear in
Designs, Codes and Cryptography.
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