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Motivation

Differential-linear cryptanalysis has been quite successful attacking
block ciphers, in particular, Serpent

Although it seems to work, it is rather ad hoc and its foundations have
not been well studied

We know by now that differential and linear cryptanalysis are closely
linked - what does it mean for differential-linear cryptanalysis?
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Differential Cryptanalysis [Murphy 90][Biham Shamir 90]

--

--

EkEk

x ′x

y ′y

6?

6?

δ

∆

Input difference : δ
Output Difference : ∆

Differential Probability :

Pr[δ → ∆] = Prx [ Ek (x)⊕ Ek (x ⊕ δ) = ∆]

Truncated Differential (TD) [Knudsen 94] :

Pr[U⊥ → V⊥] =
1
|U⊥|

∑
δ∈U⊥

∑
∆∈V⊥

Pr[δ → ∆]

Difference between plaintext and ciphertext pairs
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Linear Cryptanalysis [Tardy Gilbert 91] [Matsui 93]

Linear relation involving plaintext and ciphertext bits
x

y = Ek(x)
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Input mask : u
Output mask : v

Correlation :

cu,v = 2 · Prx [u · x + v · Ek (x) = 0]− 1

Capacity of a multidimensional linear
approximation : [Hermelin et al. 08]

CU,V =
∑

u∈U\{0}

∑
v∈V\{0}

c2
u,v
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Differential-Linear Cryptanalysis: The Setting

︷︸︸︷U⊥ = {δ, 0}

?

p

︷ ︸︸ ︷ ︷ ︸︸ ︷V V⊥

v
︸ ︷︷ ︸

sp(v)⊥

�
�
�
�
��

︸︷︷︸
W = {0,w}

?

cv ,w

I E = E1 ◦ E0

I V is a subspace of the
intermediate layer

I Strong truncated differential
(δ,V⊥) over E0

p = Pr[δ
E0→ V⊥]

I Strong linear approximation (v ,w)
over E1, where v ∈ V

cv ,w = 2·Pr[v ·y +w ·E1(y) = 0]−1
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Differential-Linear Relation: The Bias?
In differential-linear cryptanalysis, we want to compute this bias:

Eδ,w = Pr[w · (E(x + δ) + E(x)) = 0]− 1
2

Approach used in the literature:

w · (E(x + δ) + E(x)) = v · E0(x + δ) + w · E(x + δ)

+ v · (E0(x + δ) + E0(x))

+ v · E0(x) + w · E(x)

The Piling-up lemma gives

Eδ,w = εδ,v c2
v ,w ,

where

εδ,v = Pr[v · (E0(x + δ) + E0(x)) = 0]− 1
2

= Pr[δ
E0→ sp(v)⊥]− 1

2
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Previous Work

︷︸︸︷U⊥ = {δ, 0}

?

p

︷ ︸︸ ︷ ︷ ︸︸ ︷V V⊥

v
︸ ︷︷ ︸

sp(v)⊥

�
�
�
�
��

︸︷︷︸
W = {0,w}

?

cv ,w

Eδ,w = εδ,v c2
v ,w

[Langford and Hellman 94]

p = 1 and Eδ,w =
1
2

c2
v ,w

[Biham et al 02]
Problem: p < 1 known, εδ,v not known
Assumption: outside V⊥ the parities of
v ·∆ balanced. They get εδ,v ≈ p

2

[Lu 12]
Observes that this estimate fails if V⊥ =
sp(v)⊥, and restricts to this case
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Example: Estimate may fail also if V⊥ 6= sp(v)⊥

V = {(0,0,0, . . . ,0), (0,1,0, . . . ,0), (1,0,0, . . . ,0), (1,1,0, . . . ,0)}
V⊥ = {(0,0, ∗, . . . , ∗)}

v = (1,1,0, . . . ,0)

sp(v)⊥ = {(0,0, ∗, . . . , ∗), (1,1, ∗, . . . , ∗)}

Assume
p =

1
2

and Pr[δ → (1,1, ∗, . . . , ∗)] = 0

Then Pr[v · (E0(x + δ) + E0(x)) = 0] = 1
2 , that is εδ,v = 0

The assumption of Biham et al. gives εδ,v ≈ 1
4

Linear approximations with more than one intermediate mask v must
be considered
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Differential and Linear Cryptanalysis: The Link
[Chabaud Vaudenay 94] [Blondeau Nyberg 13, 14]

︷ ︸︸ ︷ ︷︸︸︷U U⊥

? ?︸︷︷︸ ︸ ︷︷ ︸
W W⊥

�
�
�
�
�
�
��

Pr[U⊥ F→W⊥]CU,W

multidim. linear
1
|W |

(CU,W + 1)

trunc. differential Pr[U⊥ F→W⊥]

differential-linear
1
|U⊥|

∑
δ∈U⊥

Pr[w · (F (x + δ) + F (x)) = 0, for all w ∈W ]
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Differential-Linear Relation: The Bias

Assumption : E0 and E1 are independent

Result : For all δ ∈ Fn
2 \ {0} and w ∈ Fn

2 \ {0}

Eδ,w =
∑
v∈Fn

2

εδ,v c2
v ,w .

The ideas of the proof:
I Round-independence
I Splitting

Pr[δ E→ sp(w)⊥] =
∑

∆∈Fn
2

Pr[δ
E0→ ∆] Pr[∆ E1→ sp(w)⊥]

I Link between linear and differential cryptanalysis
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Restricting to a Part of the Intermediate Layer

Eδ,w =
∑
v∈Fn

2

εδ,v c2
v ,w

I Impossible to compute in practice for all intermediates masks
I Cover only a part V of the intermediate layer

Êδ,w =
∑
v∈V

εδ,v c2
v ,w

Assumption: For our selected set V we have∣∣∣Êδ,w ∣∣∣ ≤ |Eδ,w |
I Then we can derive an upperbound to the data complexity
I Is this assumption true in practice?
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Experiments on SmallPRESENT-[8]
I Comparison between

I The exact bias
I The bias computed when taking only a subset of the intermediate

linear mask
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I The assumption is verified on these experiments:
the estimate |Êδ,w | is an underestimate of the absolute bias |Eδ,w |
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A Lower Bound to Eδ,w > 0

Eδ,w =
∑
v∈Fn

2

εδ,v c2
v ,w =

∑
v∈Fn

2

(
εδ,v +

1
2

)
c2

v ,w −
1
2

Then the following quantity increases with V

∑
v∈V

(
εδ,v +

1
2

)
c2

v ,w −
1
2

= Êδ,w −
1
2

(
1−

∑
v∈V

c2
v ,w

)

and is less than or equal to Eδ,w . As soon as it is positive, it gives a
lower bound to Eδ,w .

Works if Eδ,w is positive.
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Multiplying Truncated Differentials

Êδ,w =
∑
v∈V

εδ,v c2
v ,w

Question:
Do we need to know the quantities εδ,v and c2

v ,w for all v ∈ V?

I εδ,V = Pr[δ
E0→ V⊥]− 1

|V |
I CV ,w =

∑
v∈V ,v 6=0

c2
v ,w

Assumption: For all ∆ /∈ V⊥, the probabilities P[δ
E0→ ∆] are equal

Result: Êδ,w =
1
2
|V |
|V | − 1

εδ,V CV ,w︸ ︷︷ ︸
=B
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Multiplying Truncated Differentials

Êδ,w =
∑
v∈V

εδ,v c2
v ,w

Question:
Do we need to know the quantities εδ,v and c2

v ,w for all v ∈ V?

I εδ,V = Pr[δ
E0→ V⊥]− 1

|V |
I CV ,w =

∑
v∈V ,v 6=0

c2
v ,w

Assumption: For all ∆ /∈ V⊥, the probabilities P[δ
E0→ ∆] are equal

Result: Êδ,w =
1
2
|V |
|V | − 1

εδ,V CV ,w︸ ︷︷ ︸
=B
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More Experiments

-20

-18

-16

-14

-12

-10

-8

1 2 3 4 5 6 7 8 9

lo
g(

bi
as

)

log(|V |)

Eδ,w
ˆEδ,w
B

-20

-18

-16

-14

-12

-10

-8

1 2 3 4 5 6 7 8 9

lo
g(

bi
as

)

log(|V |)

Eδ,w
ˆEδ,w
B

I Multiplication of truncated differentials instead of differentials
does not give an underestimate or an overestimate of Êδ,w

I In this example, B would work because it is sufficiently close to
Êδ,w which is an underestimate of the true bias Eδ,w

I [Blondeau 13] This phenomenon of multiplication of truncated
differentials may ruin the estimates in sensitive situations such
as improbable differentials
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Multidimensional Differential-Linear Cryptanalysis
I All input differences in U⊥

I All output masks in W

Given for all v ∈ Fn
2, v 6= 0

I εU,v = Pr[U⊥ \ {0} E0→ sp(v)⊥]− 1/2

I Cv ,W =
∑

w∈W ,w 6=0 cor2(v · y + w · E1(y))

Then

EU,W = Pr[U⊥ \ {0} E→W⊥]− 1
|W |

=
2
|W |

∑
v∈Fn

2,v 6=0

εU,v Cv ,W

I The results about intermediate space V apply also here
I Multiplication of truncated differentials is even more shaky
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Conclusion

I We analyze the previous approaches to the differential-linear
cryptanalysis

I Using the links between differential and linear cryptanalysis, we
derive an exact formula for the bias Eδ,w of a differential-linear
approximation

I Under some clear assumptions, we explain how this bias can be
estimated in practice

I It seems that positive biases are easier to estimate

I We generalize the results to the case of many input differences
and output masks


	Introduction
	The Setting and Previous Work
	Computing the Bias
	Estimating the Bias
	Multidimensional Differential-Linear Cryptanalysis
	Conclusion

