

Mridul Nandi

Indian Statistical Institute, Kolkata

mridul@isical.ac.in

March 4, FSE-2014, London

Authentication: The Popular Story

- Alice and Bob share a secret key K.
- Obta Integrity: Alice sends *M* along with tag *T* = *Tag_K(M)* to Bob. Bob can verify.

Authentication: The Popular Story

- Alice and Bob share a secret key K.
- Oata Integrity: Alice sends M along with tag T = Tag_K(M) to Bob. Bob can verify.

Examples from Scratch.

- Fixed Input-Length (FIL) and Fixed Output-Length (FOL) Prf (or Mac) f
 - Blockcipher
 - *compression function* of a hash (key is injected through chain or message block).

Authentication: The Popular Story

- Alice and Bob share a secret key K.
- Obta Integrity: Alice sends *M* along with tag *T* = *Tag_K(M)* to Bob. Bob can verify.

Examples from Scratch.

- Fixed Input-Length (FIL) and Fixed Output-Length (FOL) Prf (or Mac) f
 - Blockcipher
 - *compression function* of a hash (key is injected through chain or message block).
- Obmain extensions (construction of VIL) based on
 - blockcipher (variants of CBC, PMAC etc.) and
 - o compression functions (HMAC, EMD, sandwich, MDP etc.).

VIL-FOL Authentication from FIL-FOL

• Composition Method: Let H be an *n*-bit (unkeyed) collision resistant hash function then $f \circ H$ is Prf (also Mac).

Question. Is $f(N) \oplus H(M)$ Nonce-based Mac? (nonce can repeat only for forging message)

VIL-FOL Authentication from FIL-FOL

• Composition Method: Let H be an *n*-bit (unkeyed) collision resistant hash function then $f \circ H$ is Prf (also Mac).

Question. Is $f(N) \oplus H(M)$ Nonce-based Mac? (nonce can repeat only for forging message)

Solution Of the set of the s

Question. Is $f(N) \oplus H_k(M)$ Nonce-based Mac?

VIL-FOL Authentication from FIL-FOL

• Composition Method: Let H be an *n*-bit (unkeyed) collision resistant hash function then $f \circ H$ is Prf (also Mac).

Question. Is $f(N) \oplus H(M)$ Nonce-based Mac? (nonce can repeat only for forging message)

Solution Of the second se

Question. Is $f(N) \oplus H_k(M)$ Nonce-based Mac?

3 Not always, if $\Pr[H_k(M) \oplus H_k(M') = \delta]$ is high then

 $T = f(N) \oplus H_k(M) \Rightarrow \Pr[f(N) \oplus M' = T \oplus \delta]$ is high.

Definitions of ΔU and Universal hash.

- Differential probability: For all M ≠ M' and for all δ, H_k is called ε-ΔU if differential probability Pr[H_k(M) ⊕ H_k(M') = δ] ≤ ε.
 - Denote the event $\Delta H_k(M) = \delta$. $(\Delta f(x) := f(x) f(x'))$
 - For "small" ϵ , $f(N) \oplus H_k(M)$ is Mac (nonce-based).

Definitions of ΔU and Universal hash.

- O Differential probability: For all M ≠ M' and for all δ, H_k is called ε-ΔU if differential probability Pr[H_k(M) ⊕ H_k(M') = δ] ≤ ε.
 - Denote the event $\Delta H_k(M) = \delta$. $(\Delta f(x) := f(x) f(x'))$
 - For "small" ϵ , $f(N) \oplus H_k(M)$ is Mac (nonce-based).
- Collision probability: When we restrict to δ = 0, i.e., collision probability Pr[H_k(M) = H_k(M')] ≤ ε we say that H_k is ε-U hash.
 For "small" ε, f ∘ H_k is Prf and so Mac.
- Main object of the talk On optimum complexity of △U (or Universal) hash functions.

Convention. Galois field \mathbb{F}_{2^n} (elements are called **blocks**). $\mathcal{K}_1, \mathcal{K}_2, \ldots \stackrel{\$}{\leftarrow} \mathbb{F}_{2^n}$ and **K** to denote vector of keys.

1
$$\forall m_1, m_2 \in \mathbb{F}_{2^n}, \ (m_1, m_2) \mapsto \boxed{m_1 K_1 + m_2 K_2}.$$

Convention. Galois field \mathbb{F}_{2^n} (elements are called **blocks**). $\mathcal{K}_1, \mathcal{K}_2, \ldots \stackrel{\$}{\leftarrow} \mathbb{F}_{2^n}$ and **K** to denote vector of keys.

$$\ \, \bullet \ \, \forall m_1,m_2\in \mathbb{F}_{2^n},\ (m_1,m_2)\mapsto \boxed{m_1K_1+m_2K_2}.$$

2 Differential property: For any $(m_1, m_2) \neq (m_1', m_2')$, $\delta \in \mathbb{F}_{2^n}$,

$$\Pr[\underbrace{m_1K_1 + m_2K_2 = m'_1K_1 + m'_2K_2 + \delta}_{\text{differential event }E}] = \frac{1}{2^n}$$

Convention. Galois field \mathbb{F}_{2^n} (elements are called **blocks**). $K_1, K_2, \ldots \stackrel{\$}{\leftarrow} \mathbb{F}_{2^n}$ and **K** to denote vector of keys.

$$\ \, { \ \, } \quad \forall m_1,m_2\in \mathbb{F}_{2^n}, \ (m_1,m_2)\mapsto \overline{m_1K_1+m_2K_2}.$$

2 Differential property: For any $(m_1, m_2) \neq (m_1', m_2')$, $\delta \in \mathbb{F}_{2^n}$,

$$\Pr[\underbrace{m_1K_1 + m_2K_2 = m'_1K_1 + m'_2K_2 + \delta}_{\text{differential event }E}] = \frac{1}{2^n}$$

Solution Proof. If m₁ ≠ m'₁ (i.e., Δm₁ ≠ 0) then result follows conditioning K₂.

Example: Pseudo dot-product (PDP) Hash

$$\ \, { \ \, } \quad \forall m_1,m_2\in \mathbb{F}_{2^n},(m_1,m_2)\mapsto \Big|\,(m_1+K_1)(m_2+K_2)\,\Big|.$$

O ifferential property: $PDP = ML + K_1K_2 + m_1m_2$. Function of key gets canceled and messages goes to δ .

Example: **Pseudo dot-product** (PDP) Hash

1

$$\forall m_1, m_2 \in \mathbb{F}_{2^n}, (m_1, m_2) \mapsto \boxed{(m_1 + K_1)(m_2 + K_2)}.$$

- **O ifferential property:** $PDP = ML + K_1K_2 + m_1m_2$. Function of key gets canceled and messages goes to δ .
- **3** 1 (or $\ell/2$) mult for 2 (or ℓ even) blocks (compare with ML).

$$(m_1 + K_1)(m_2 + K_2) + \cdots + (m_{\ell-1} + K_{\ell-1})(m_{\ell} + K_{\ell}).$$

Question 1. Can we have ΔU hash for ℓ message blocks requiring less than $\ell/2$ multiplications?

Linear function (in message and keys) has no mult and can not be universal. Note # multiplicands is 2*c* for *c* mult and these behave like linear, so **due to entropy should not hope**.

Multi-block Hash

- *d*-block hash $H = (H_1, \ldots, H_d)$ outputs $\mathbb{F}_{2^n}^d$ (*nd* bits) We need it possibly for
 - larger hash output or
 - work with smaller field size might lead to better performance. For example, 64 bit system wants to produce 128 bits.

Examples.

- **2** *d*-independent hash: $H = (H_{\mathbf{K}_1}, \dots, H_{\mathbf{K}_d})$ where *H* is ΔU and \mathbf{K}_i 's are independent.
 - Larger keys,
 - parallel.
- Solution To a straight to ML and PDP): Less keys and parallel. requires about d × ℓ or d × ℓ/2 multiplications.

Toeplitz Hash for ML

- $\begin{bmatrix} m_1 & m_2 & \dots & m_{\ell} & 0 & \dots & 0 & 0 \\ 0 & m_1 & \dots & m_{\ell-1} & m_{\ell} & \dots & 0 & 0 \\ 0 & 0 & \dots & m_{\ell-2} & m_{\ell-1} & \dots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \dots & m_{\ell-d+1} & & \dots & m_{\ell-1} & m_{\ell} \end{bmatrix} \cdot \begin{pmatrix} K_1 \\ K_2 \\ K_3 \\ \vdots \\ K_{\ell+d-1} \end{pmatrix}$
- Can be computed in $d \times \ell$ multiplications.
- Winograd showed that it can not be computed in "less than" $d \times \ell$ mult.

Toeplitz Hash for PDP

$$\begin{bmatrix} (m_1, m_2) & (m_3, m_4) & \dots & (m_{\ell-1}, m_{\ell}) & 0 & \dots & 0 \\ 0 & (m_1, m_2) & \dots & (m_{\ell-3}, m_{\ell-2}) & (m_{\ell-1}, m_{\ell}) & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix} \bullet \begin{pmatrix} (K_1, K_2) \\ (K_3, K_4) \\ \vdots \end{pmatrix}$$

- Here, $(m, m') \bullet (K, K') = (m + K) \cdot (m' + K')$.
- It can be computed in $d \times \ell/2$ multiplications for computing *d*-block hash.
- No known better algorithm.

Question 1-*d*. Can we have *d*-block ΔU hash for ℓ message blocks requiring less than $d \times \ell/2$ multiplications?

< ∃ >

Multi-block Hash. Question 1-d

Question 1-*d*. Can we have *d*-block ΔU hash for ℓ message blocks requiring less than $d \times \ell/2$ multiplications?

1 Try-1: $(m_1K_1 + m_2K_2, m_1K_2 + m_2K_1) \rightarrow 3$ mult instead of 4.

However, 2^{-n} differential probability. Expect 2^{-2n} and about 2^{-nd} for *d*-blk hash. We always have (H_1, \ldots, H_1) .

Question 1-*d*. Can we have *d*-block ΔU hash for ℓ message blocks requiring less than $d \times \ell/2$ multiplications?

• Try-1: $(m_1K_1 + m_2K_2, m_1K_2 + m_2K_1) \rightarrow 3$ mult instead of 4.

However, 2^{-n} differential probability. Expect 2^{-2n} and about 2^{-nd} for *d*-blk hash. We always have (H_1, \ldots, H_1) .

- **2** Try-2: Let α be a primitive element of \mathbb{F}_{2^n} . $(m_1K_1 + m_2K_2 + m_3K_3, \ \alpha^2m_1K_1 + \alpha m_2K_2 + m_3K_3))$ where $m_3 = m_1 + m_2$.
 - 2^{-2n} differential probability,
 - 3 mult (mult by α is efficient) for 4 blocks with PDP.
 - Our construction EHC requires less than $d \times \ell/2$ mult.

Final Question: Multiplication Complexity.

• Minimum how much mult is necessary for *d*-blk hash?

Final Question: Multiplication Complexity.

- Minimum how much mult is necessary for d-blk hash?
- **2** Need to define a complexity metric for hash.
 - Multiplication complexity (MC) for a polynomial (or *d* polynomials) Minimum # mult to compute a polynomial (or *d* polynomials).
 - MC for $H_1 := m_1K_1 + m_2K_2$ and $H_2 := m_1K_2 + m_2K_1$ are individually 2 and for (H_1, H_2) is 3.

Final-Question. Minimum MC for a good ΔU hash function.

1 Definition of Multiplication Complexity (MC).

- Definition of Multiplication Complexity (MC).
- Answer 1. The MC for any "good" ΔU hash function for *l* block messages is *l*/2.

- Definition of Multiplication Complexity (MC).
- Answer 1. The MC for any "good" ΔU hash function for *l* block messages is *l*/2.
- Solution Answer 1-d. The MC for any "good" d-blk ΔU hash function for ℓ block messages is (d − 1) + ℓ/2.

- Definition of Multiplication Complexity (MC).
- Answer 1. The MC for any "good" ΔU hash function for *l* block messages is *l*/2.
- Solution Answer 1-d. The MC for any "good" d-blk ΔU hash function for ℓ block messages is (d − 1) + ℓ/2.
- A new construction ECH (Encode-then-Hash-then-Combine). Requires matching $(d-1) + \ell/2$ mult for $d \le 4$.

- Definition of Multiplication Complexity (MC).
- Answer 1. The MC for any "good" ΔU hash function for *l* block messages is *l*/2.
- Solution Answer 1-d. The MC for any "good" d-blk ΔU hash function for ℓ block messages is (d − 1) + ℓ/2.
- A new construction ECH (Encode-then-Hash-then-Combine). Requires matching $(d-1) + \ell/2$ mult for $d \le 4$.
- **I** Future scope and Conclusion.

- Algebraic computation C over variables x = (x₁,..., x_s): sequence of addition and multiplications.
 - $\bullet~$ All consecutive additions \rightarrow Linear function.
 - multiplicands are linear functions of x and v_j's (result of previous multiplications).

- Algebraic computation C over variables x = (x₁,...,x_s): sequence of addition and multiplications.
 - $\bullet~$ All consecutive additions \rightarrow Linear function.
 - multiplicands are linear functions of x and v_j's (result of previous multiplications).
- Want to compute PDP (m₁ + K₁)(m₂ + K₂) + (m₃ + K₃)(m₄ + K₄).
 L₁ = (m₁ + K₁), L₂ = (m₂ + K₂), v₁ = L₁ · L₂.

- Algebraic computation C over variables x = (x₁,...,x_s): sequence of addition and multiplications.
 - $\bullet~$ All consecutive additions \rightarrow Linear function.
 - multiplicands are linear functions of x and v_j's (result of previous multiplications).
- Want to compute PDP (m₁ + K₁)(m₂ + K₂) + (m₃ + K₃)(m₄ + K₄).
 L₁ = (m₁ + K₁), L₂ = (m₂ + K₂), v₁ = L₁ ⋅ L₂.
 L₃ = (m₃ + K₃), L₄ = (m₄ + K₄), (these do not use v₁).
 v₂ = L₃ ⋅ L₄.

- Algebraic computation C over variables x = (x₁,...,x_s): sequence of addition and multiplications.
 - $\bullet~$ All consecutive additions \rightarrow Linear function.
 - multiplicands are linear functions of x and v_j's (result of previous multiplications).
- Want to compute PDP (m₁ + K₁)(m₂ + K₂) + (m₃ + K₃)(m₄ + K₄).
 L₁ = (m₁ + K₁), L₂ = (m₂ + K₂), v₁ = L₁ ⋅ L₂.
 L₃ = (m₃ + K₃), L₄ = (m₄ + K₄), (these do not use v₁).
 v₂ = L₃ ⋅ L₄.
 L₅ = v₁ + v₂.

• Want to compute Poly-hash $m_1K + m_2K^2 + m_3K^3$.

•
$$L_1 = m_3, L_2 = K, v_1 = L_1 \cdot L_2.$$

• Want to compute Poly-hash $m_1K + m_2K^2 + m_3K^3$.

•
$$L_1 = m_3, L_2 = K, v_1 = L_1 \cdot L_2.$$

• $L_3 = v_1 + m_2$, (here we use v_1), $L_4 = K$.

•
$$v_2 = L_3 \cdot L_4$$
.

A B > A B >

• Want to compute Poly-hash $m_1K + m_2K^2 + m_3K^3$.

•
$$L_1 = m_3, L_2 = K, v_1 = L_1 \cdot L_2.$$

• $L_3 = v_1 + m_2$, (here we use v_1), $L_4 = K$
• $v_2 = L_3 \cdot L_4.$
• $L_5 = v_2 + m_1, L_6 = K, v_3 = L_5 \cdot L_6.$
• $L_7 = v_3.$

• • = • • = •

• Want to compute Poly-hash $m_1K + m_2K^2 + m_3K^3$.

•
$$L_1 = m_3, L_2 = K, v_1 = L_1 \cdot L_2.$$

• $L_3 = v_1 + m_2$, (here we use v_1), $L_4 = K$.
• $v_2 = L_3 \cdot L_4.$
• $L_5 = v_2 + m_1, L_6 = K, v_3 = L_5 \cdot L_6.$
• $L_7 = v_3.$

- C with t mult can be described by 2t + 1 linear functions:
 L₁,..., L_{2t+1} mapping to F_{2ⁿ}.
- **3** L_{2i-1} and L_{2i} are linear in **x** and $v_j := L_{2j-1} \cdot L_{2j}$, $1 \le j < i$.
- x_i 's will be key and message blocks.
- Oconstant multiplications. Efficient and linear.

Algebraic computation: $C(x_1, \ldots, x_s)$.

• For
$$j = 1$$
 to t
• $v_j := L_{2j-1}(x_1, \dots, x_s, v_1, \dots, v_{j-1}) \cdot L_{2j}(x_1, \dots, x_s, v_1, \dots, v_{j-1});$
• Return $L_{2t+1}(x_1, \dots, x_s, v_1, \dots, v_t);$

We say that $C(x_1, \ldots, x_s)$ computes the polynomial $P(x_1, \ldots, x_s)$ if $L_{2t+1}(x_1, \ldots, x_s, v_1, \ldots, v_t) = P$.

Definition (Multiplication complexity)

Multiplication complexity of a polynomial *P* is the **minimum** number of mult. over **all algebraic computations** computing *P*.

高 と く ヨ と く ヨ と

Multiplication Complexity for vector of Polynomials.

Algebraic computation: $C(x_1, \ldots, x_s)$ computing *d* polynomials.

• For
$$j = 1$$
 to t

3 Return $(L_{2t+1}(\mathbf{x}, \mathbf{v}), \dots, L_{2t+d}(\mathbf{x}, \mathbf{v}))$; where $\mathbf{v} = (v_1, \dots, v_t)$

We say that C computes the polynomial (P_1, \ldots, P_d) if $L_{2t+i}(\mathbf{x}, \mathbf{v}) = P_i, 1 \le i \le d$.

Definition (Multiplication complexity)

Multiplication complexity of a vector of polynomial (P_1, \ldots, P_d) is the minimum number of mult. over all algebraic computations computing (P_1, \ldots, P_d) .

Some Examples of Multiplication Complexity.

Upper bound of MC: Construct an algebraic computation.
 Lower bound of MC: requires some tricks, not obvious.

Examples.

Some Examples of Multiplication Complexity.

- **1** Upper bound of MC: Construct an algebraic computation.
- Output Service Serv

Examples.

- MC for xⁿ is log₂ n. Note that by multiplying c times we can get degree at most 2^c.
- **②** Winograd had shown that MC for $m_1K_1 + \ldots + m_\ell K_\ell$ is ℓ .
- **③** MC for Topelitz construction based on ML is ℓd .

Lower bound of MC(p) for any fixed polynomial p is not obvious.

★ ∃ →

- Lower bound of MC(p) for any fixed polynomial p is not obvious.
- Pere we target apparently more harder questions.
 What is min{*MC(p)* : *p* ∈ *H*} where *H* is a family of polynomials having ∆U property?

Theorem

Let $t < \ell/2$. Let C compute $H(K_1, \ldots, K_r, m_1, \ldots, m_\ell)$ with t multiplications (i.e., $MC(H) \le t$) then $\exists \mathbf{m} \neq \mathbf{m}' \in \mathbb{F}_{2^n}^{\ell}, \delta \in \mathbb{F}_{2^n}$,

 $\Pr[H_{\mathsf{K}}(\mathsf{m}) \oplus H_{\mathsf{K}}(\mathsf{m}') = \delta] = 1.$

Corollary

 $MC(PDP) = \ell/2$, and it is optimum.

BRW (Bernstein-Rabin-Winograd) is also optimum (single key, but about $\ell 2^{-n}$ - ΔU .

Theorem

Let $t < \ell/2$. Let C compute $H(K_1, \ldots, K_r, m_1, \ldots, m_\ell)$ with t multiplications (i.e., $MC(H) \le t$) then $\exists m \neq m' \in \mathbb{F}_{2^n}^{\ell}, \delta \in \mathbb{F}_{2^n}$,

 $\Pr[H_{\mathsf{K}}(\mathsf{m}) \oplus H_{\mathsf{K}}(\mathsf{m}') = \delta] = 1.$

Proof Sketch.

- We define a function V maps \mathbf{m}, \mathbf{K} to (v_1, \ldots, v_{2t}) .
- Using linearity and *m* has more than 2*t* choices we find a differential pair of *V* with probability 1.
- The same pair leads differential pair for H (possibly with different difference).

Theorem

Let $t < \ell/2 + r$, $r \le d$. Let C compute a vector of d polynomials $H = (H_1, \ldots, H_d)$ with t multiplications then

 $\exists \mathbf{m} \neq \mathbf{m}' \in \mathbb{F}_{2^n}^{\ell}, \delta \in \mathbb{F}_{2^n}, \Pr[H_{\mathbf{K}}(\mathbf{m}) \oplus H_{\mathbf{K}}(\mathbf{m}') = \delta] \geq 2^{-nr}.$

- If r = d 1 (or $t = \ell/2 + d 2$), we say that we only get differential probability about $2^{-n(d-1)}$ instead of 2^{-nd} .
- ② $r = d \Rightarrow t \ge d 1 + \ell/2$ is the minimum number of mult (in \mathbb{F}_{2^n}) to get about 2^{-nd} -∆U hash which outputs $\mathbb{F}_{2^n}^d$.

- Can apply previous idea to find a differential pair for the first v_1, \ldots, v_{t-r} (as $2(t-r) < \ell$).
- For remaining v_i's (r such, i.e., v_{t-r+1},..., v_t) we claim that there must exist a difference with probability at least 2^{-nr} (the best difference, existential).
- This will eventually leads to differential pair for H with same probability.

Encode-then-Hash-then-Combine:

• error correcting code: $e: D \to A^{\ell}$ with the minimum distance d.

MDS with systematic form such as [I : V] where V is a Vandermonde Matrix.

2
$$\Delta U$$
 hash: $h_K : A \to \mathbb{F}_{2^n}$ be an ϵ - ΔU .
 $A = \mathbb{F}_{2^n}^2$ and $(m_1, m_2) \mapsto (m_1 + K_1)(m_2 + K_2)$.

Some interval and a comparison of the second se

Vandermonde Matrix, again.

Encode-then-Hash-then-Combine or EHC.

Input: $M \in D$. Output: $(H_1, \ldots, H_d) \in \mathbb{F}_{2^n}^d$. **1** $e(M) = (m_1, \ldots, m_\ell) \in A^\ell$. • $h_i = h_{K_i}(m_i)$ for ℓ independent keys K_i 's, $1 \le i \le \ell$. **3** $(H_1, \ldots, H_d) = (h_1, \ldots, h_\ell) \cdot V$, i.e. $\begin{pmatrix} 1 & 1 & \cdots & 1 & 1\\ \alpha^{\ell-1} & \alpha^{\ell-2} & \cdots & \alpha & 1\\ \vdots & \vdots & \vdots & \vdots & \vdots\\ \alpha^{(\ell-1)(d-1)} & \alpha^{(\ell-2)(d-1)} & \cdots & \alpha^{d-1} & 1 \end{pmatrix} \begin{pmatrix} h_1\\ h_2\\ \vdots\\ h_\ell \end{pmatrix} = \begin{pmatrix} H_1\\ H_2\\ \vdots\\ H_d \end{pmatrix}$

- If $M \neq M'$, then (m_1, \ldots, m_ℓ) and (m_1, \ldots, m_ℓ) differ at least in *d* positions (for simplicity assume the first *d* positions).
- Conditions all keys $K_{d+1}, \ldots, K_{\ell}$.
- The differential event implies that $(\Delta h_{K_1}(m_1), \ldots, \Delta h_{K_d}(m_d)) \cdot V' = \delta'$ where V' is the first d columns of V and non-singular.
- Thus differential probability is at most ϵ^d .

Specific Choices of EHC for d = 2, $\ell + 2 = 2\ell'$.

1
$$M = (x_1, \dots, x_{\ell'}) \in \mathbb{F}_{2^{2n}}^{\ell'}$$
. We write $x_i = (m_{2i-1}, m_{2i}) \in \mathbb{F}_{2^n}^2$.
2 $x_{\ell'} = \bigoplus_i x_i = (m_{\ell'-1}, m_{\ell'})$.

- V is Vandermonde matrix with entries from \mathbb{F}_{2^n} .

$$\left(\begin{array}{cccc}1&1&\cdots&1&1\\\alpha^{\ell-1}&\alpha^{\ell-2}&\cdots&\alpha&1\end{array}\right)$$

H₁ = (m₁ ⊕ K₁)(m₂ ⊕ K₂) ⊕ · · · ⊕ (m_{ℓ-1} ⊕ K_{ℓ-1})(m_ℓ ⊕ K_ℓ)
H₂ = α^{ℓ'-1}(m₁ ⊕ K₁)(m₂ ⊕ K₂) ⊕ · · · ⊕ (m_{ℓ-1} ⊕ K_{ℓ-1})(m_ℓ ⊕ K_ℓ)

Variable Length. Can be taken care by hashing length.

Specific Choices of EHC for d = 4.

Comparison with Toeplitz, d = 4 for PDP

э

-

3

- Provide tight matching bounds on multiplications for ΔU hash functions, even for multi-block hash.
- A practical construction (hardware friendly, less area). Actual hardware performace yet to observe.
- Here we consider multiplication vs. message blocks. One can include error probability and study the relationship among these.

Thank You

Mridul Nandi ΔU hash and Multiplication

æ

< ≣ >