Minimum Number of Multiplications of $\Delta \mathrm{U}$ Hash Functions

Mridul Nandi
Indian Statistical Institute, Kolkata
mridul@isical.ac.in
March 4, FSE-2014, London

Authentication: The Popular Story

(1) Alice and Bob share a secret key K.
(2) Data Integrity: Alice sends M along with tag $T=\operatorname{Tag}_{K}(M)$ to Bob. Bob can verify.

Authentication: The Popular Story

(1) Alice and Bob share a secret key K.
(2) Data Integrity: Alice sends M along with tag $T=\operatorname{Tag}_{K}(M)$ to Bob. Bob can verify.

Examples from Scratch.

(3) Fixed Input-Length (FIL) and Fixed Output-Length (FOL) Prf (or Mac) f

- Blockcipher
- compression function of a hash (key is injected through chain or message block).

Authentication: The Popular Story

(1) Alice and Bob share a secret key K.
(2) Data Integrity: Alice sends M along with tag $T=\operatorname{Tag}_{K}(M)$ to Bob. Bob can verify.

Examples from Scratch.

(3) Fixed Input-Length (FIL) and Fixed Output-Length (FOL) Prf (or Mac) f

- Blockcipher
- compression function of a hash (key is injected through chain or message block).
(9) Domain extensions (construction of VIL) based on
(1) blockcipher (variants of CBC, PMAC etc.) and
(2) compression functions (HMAC, EMD, sandwich, MDP etc.).

VIL-FOL Authentication from FIL-FOL

(1) Composition Method: Let H be an n-bit (unkeyed) collision resistant hash function then $f \circ H$ is Prf (also Mac).

Question. Is $f(N) \oplus H(M)$ Nonce-based Mac? (nonce can repeat only for forging message)

VIL-FOL Authentication from FIL-FOL

(1) Composition Method: Let H be an n-bit (unkeyed) collision resistant hash function then $f \circ H$ is Prf (also Mac).

Question. Is $f(N) \oplus H(M)$ Nonce-based Mac? (nonce can repeat only for forging message)
(2) NO, given $T=f(N) \oplus H(M) \Rightarrow T^{\prime}=T \oplus H(M) \oplus H\left(M^{\prime}\right)$ is also tag. So we need keyed hash H_{k}.

Question. Is $f(N) \oplus H_{k}(M)$ Nonce-based Mac?

VIL-FOL Authentication from FIL-FOL

(1) Composition Method: Let H be an n-bit (unkeyed) collision resistant hash function then $f \circ H$ is Prf (also Mac).

Question. Is $f(N) \oplus H(M)$ Nonce-based Mac? (nonce can repeat only for forging message)
(2) NO, given $T=f(N) \oplus H(M) \Rightarrow T^{\prime}=T \oplus H(M) \oplus H\left(M^{\prime}\right)$ is also tag. So we need keyed hash H_{k}.

Question. Is $f(N) \oplus H_{k}(M)$ Nonce-based Mac?
(3) Not always, if $\operatorname{Pr}\left[H_{k}(M) \oplus H_{k}\left(M^{\prime}\right)=\delta\right]$ is high then

$$
T=f(N) \oplus H_{k}(M) \Rightarrow \operatorname{Pr}\left[f(N) \oplus M^{\prime}=T \oplus \delta\right] \text { is high. }
$$

Definitions of ΔU and Universal hash.

(1) Differential probability: For all $M \neq M^{\prime}$ and for all δ, H_{k} is called $\epsilon-\Delta U$ if differential probability $\operatorname{Pr}\left[H_{k}(M) \oplus H_{k}\left(M^{\prime}\right)=\delta\right] \leq \epsilon$.

- Denote the event $\Delta H_{k}(M)=\delta .\left(\Delta f(x):=f(x)-f\left(x^{\prime}\right)\right)$
- For "small" $\epsilon, f(N) \oplus H_{k}(M)$ is Mac (nonce-based).

Definitions of ΔU and Universal hash.

(1) Differential probability: For all $M \neq M^{\prime}$ and for all δ, H_{k} is called $\epsilon-\Delta U$ if differential probability $\operatorname{Pr}\left[H_{k}(M) \oplus H_{k}\left(M^{\prime}\right)=\delta\right] \leq \epsilon$.

- Denote the event $\Delta H_{k}(M)=\delta .\left(\Delta f(x):=f(x)-f\left(x^{\prime}\right)\right)$
- For "small" $\epsilon, f(N) \oplus H_{k}(M)$ is Mac (nonce-based).
(2) Collision probability: When we restrict to $\delta=0$, i.e., collision probability $\operatorname{Pr}\left[H_{k}(M)=H_{k}\left(M^{\prime}\right)\right] \leq \epsilon$ we say that H_{k} is $\epsilon-\mathrm{U}$ hash.
- For "small" $\epsilon, f \circ H_{k}$ is Prf and so Mac.
(3) Main object of the talk - On optimum complexity of $\Delta \mathrm{U}$ (or Universal) hash functions.

Example. Multi-Linear (ML) Hash

Convention. Galois field $\mathbb{F}_{2^{n}}$ (elements are called blocks). $K_{1}, K_{2}, \ldots \stackrel{\$}{\leftarrow} \mathbb{F}_{2^{n}}$ and \mathbf{K} to denote vector of keys.
(1) $\forall m_{1}, m_{2} \in \mathbb{F}_{2^{n}},\left(m_{1}, m_{2}\right) \mapsto m_{1} K_{1}+m_{2} K_{2}$.

Example. Multi-Linear (ML) Hash

Convention. Galois field $\mathbb{F}_{2^{n}}$ (elements are called blocks). $K_{1}, K_{2}, \ldots \stackrel{\$}{\leftarrow} \mathbb{F}_{2^{n}}$ and \mathbf{K} to denote vector of keys.
(1) $\forall m_{1}, m_{2} \in \mathbb{F}_{2^{n}},\left(m_{1}, m_{2}\right) \mapsto m_{1} K_{1}+m_{2} K_{2}$.
(2) Differential property: For any $\left(m_{1}, m_{2}\right) \neq\left(m_{1}^{\prime}, m_{2}^{\prime}\right), \delta \in \mathbb{F}_{2^{n}}$,

$$
\operatorname{Pr}[\underbrace{m_{1} K_{1}+m_{2} K_{2}=m_{1}^{\prime} K_{1}+m_{2}^{\prime} K_{2}+\delta}_{\text {differential event } E}]=\frac{1}{2^{n}}
$$

Example. Multi-Linear (ML) Hash

Convention. Galois field $\mathbb{F}_{2^{n}}$ (elements are called blocks). $K_{1}, K_{2}, \ldots \stackrel{\$}{\leftarrow} \mathbb{F}_{2^{n}}$ and \mathbf{K} to denote vector of keys.
(1) $\forall m_{1}, m_{2} \in \mathbb{F}_{2^{n}},\left(m_{1}, m_{2}\right) \mapsto m_{1} K_{1}+m_{2} K_{2}$.
(2) Differential property: For any $\left(m_{1}, m_{2}\right) \neq\left(m_{1}^{\prime}, m_{2}^{\prime}\right), \delta \in \mathbb{F}_{2^{n}}$,

$$
\operatorname{Pr}[\underbrace{m_{1} K_{1}+m_{2} K_{2}=m_{1}^{\prime} K_{1}+m_{2}^{\prime} K_{2}+\delta}_{\text {differential event } E}]=\frac{1}{2^{n}}
$$

(3) Proof. If $m_{1} \neq m_{1}^{\prime}$ (i.e., $\Delta m_{1} \neq 0$) then result follows conditioning K_{2}.

Example: Pseudo dot-product (PDP) Hash

(1) $\forall m_{1}, m_{2} \in \mathbb{F}_{2^{n}},\left(m_{1}, m_{2}\right) \mapsto\left(m_{1}+K_{1}\right)\left(m_{2}+K_{2}\right)$.
(2) Differential property: $\mathrm{PDP}=\mathrm{ML}+K_{1} K_{2}+m_{1} m_{2}$. Function of key gets canceled and messages goes to δ.

Example: Pseudo dot-product (PDP) Hash

(1) $\forall m_{1}, m_{2} \in \mathbb{F}_{2^{n}},\left(m_{1}, m_{2}\right) \mapsto\left(m_{1}+K_{1}\right)\left(m_{2}+K_{2}\right)$.
(2) Differential property: $\mathrm{PDP}=\mathrm{ML}+K_{1} K_{2}+m_{1} m_{2}$. Function of key gets canceled and messages goes to δ.
(3) 1 (or $\ell / 2$) mult for 2 (or ℓ even) blocks (compare with $M L$).

$$
\left(m_{1}+K_{1}\right)\left(m_{2}+K_{2}\right)+\cdots+\left(m_{\ell-1}+K_{\ell-1}\right)\left(m_{\ell}+K_{\ell}\right)
$$

Question 1. Can we have ΔU hash for ℓ message blocks requiring less than $\ell / 2$ multiplications?

Linear function (in message and keys) has no mult and can not be universal. Note \# multiplicands is $2 c$ for c mult and these behave like linear, so due to entropy should not hope.

Multi-block Hash

(1) d-block hash $H=\left(H_{1}, \ldots, H_{d}\right)$ outputs $\mathbb{F}_{2^{n}}^{d}$ (nd bits) We need it possibly for

- larger hash output or
- work with smaller field size might lead to better performance. For example, 64 bit system wants to produce 128 bits.

Examples.

(2) d-independent hash: $H=\left(H_{\mathbf{K}_{1}}, \ldots, H_{\mathbf{K}_{d}}\right)$ where H is ΔU and \mathbf{K}_{i} 's are independent.

- Larger keys,
- parallel.
(3) Toeplitz hash (applied to ML and PDP): Less keys and parallel. requires about $d \times \ell$ or $d \times \ell / 2$ multiplications.

Toeplitz Hash for ML

$$
\left[\begin{array}{llllllll}
m_{1} & m_{2} & \ldots & m_{\ell} & 0 & \ldots & 0 & 0 \\
0 & m_{1} & \ldots & m_{\ell-1} & m_{\ell} & \ldots & 0 & 0 \\
0 & 0 & \ldots & m_{\ell-2} & m_{\ell-1} & \ldots & 0 & 0 \\
\vdots & \vdots & & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & \ldots & m_{\ell-d+1} & & \ldots & m_{\ell-1} & m_{\ell}
\end{array}\right] \cdot\left(\begin{array}{l}
K_{1} \\
K_{2} \\
K_{3} \\
\vdots \\
K_{\ell+d-1}
\end{array}\right)
$$

- Can be computed in $d \times \ell$ multiplications.
- Winograd showed that it can not be computed in "less than" $d \times \ell$ mult.

Toeplitz Hash for PDP

$$
\left[\begin{array}{ccccccc}
\left(m_{1}, m_{2}\right) & \left(m_{3}, m_{4}\right) & \ldots & \left(m_{\ell-1}, m_{\ell}\right) & 0 & \ldots & 0 \\
0 & \left(m_{1}, m_{2}\right) & \ldots & \left(m_{\ell-3}, m_{\ell-2}\right) & \left(m_{\ell-1}, m_{\ell}\right) & \ldots & 0 \\
\vdots & \vdots & & \vdots & \vdots & & \vdots
\end{array}\right] \bullet\left(\begin{array}{c}
\left(K_{1}, K_{2}\right) \\
\left(K_{3}, K_{4}\right) \\
\vdots
\end{array}\right)
$$

- Here, $\left(m, m^{\prime}\right) \bullet\left(K, K^{\prime}\right)=(m+K) \cdot\left(m^{\prime}+K^{\prime}\right)$.
- It can be computed in $d \times \ell / 2$ multiplications for computing d-block hash.
- No known better algorithm.

Multi-block Hash. Question 1-d

Question 1- d. Can we have d-block ΔU hash for ℓ message blocks requiring less than $d \times \ell / 2$ multiplications?

Multi-block Hash. Question 1-d

Question 1- d. Can we have d-block ΔU hash for ℓ message blocks requiring less than $d \times \ell / 2$ multiplications?
(1) Try-1: $\left(m_{1} K_{1}+m_{2} K_{2}, m_{1} K_{2}+m_{2} K_{1}\right) \rightarrow 3$ mult instead of 4. However, 2^{-n} differential probability. Expect $2^{-2 n}$ and about $2^{-n d}$ for d-blk hash. We always have $\left(H_{1}, \ldots, H_{1}\right)$.

Multi-block Hash. Question 1-d

Question 1-d. Can we have d-block ΔU hash for ℓ message blocks requiring less than $d \times \ell / 2$ multiplications?
(1) Try-1: $\left(m_{1} K_{1}+m_{2} K_{2}, m_{1} K_{2}+m_{2} K_{1}\right) \rightarrow 3$ mult instead of 4 . However, 2^{-n} differential probability. Expect $2^{-2 n}$ and about $2^{-n d}$ for d-blk hash. We always have $\left(H_{1}, \ldots, H_{1}\right)$.
(2) Try-2: Let α be a primitive element of $\mathbb{F}_{2^{n}}$.

$$
\left(m_{1} K_{1}+m_{2} K_{2}+m_{3} K_{3}, \alpha^{2} m_{1} K_{1}+\alpha m_{2} K_{2}+m_{3} K_{3}\right)
$$

$$
\text { where } m_{3}=m_{1}+m_{2} .
$$

$-2^{-2 n}$ differential probability,

- 3 mult (mult by α is efficient) for 4 blocks with PDP.
- Our construction EHC requires less than $d \times \ell / 2$ mult.
(1) Minimum how much mult is necessary for d-blk hash?

Final Question: Multiplication Complexity.

(1) Minimum how much mult is necessary for d-blk hash?
(2) Need to define a complexity metric for hash.

- Multiplication complexity (MC) for a polynomial (or d polynomials) - Minimum \# mult to compute a polynomial (or d polynomials).
- MC for $H_{1}:=m_{1} K_{1}+m_{2} K_{2}$ and $H_{2}:=m_{1} K_{2}+m_{2} K_{1}$ are individually 2 and for $\left(H_{1}, H_{2}\right)$ is 3 .

Final-Question. Minimum MC for a good ΔU hash function.

Results and Outline of Rest of the Talk.

(1) Definition of Multiplication Complexity (MC).

Results and Outline of Rest of the Talk.

(1) Definition of Multiplication Complexity (MC).
(2) Answer 1. The MC for any "good" ΔU hash function for ℓ block messages is $\ell / 2$.

Results and Outline of Rest of the Talk.

(1) Definition of Multiplication Complexity (MC).
(2) Answer 1. The MC for any "good" ΔU hash function for ℓ block messages is $\ell / 2$.
(3) Answer 1-d. The MC for any "good" d-blk ΔU hash function for ℓ block messages is $(d-1)+\ell / 2$.

Results and Outline of Rest of the Talk.

(1) Definition of Multiplication Complexity (MC).
(2) Answer 1. The MC for any "good" ΔU hash function for ℓ block messages is $\ell / 2$.
(3) Answer 1-d. The MC for any "good" d-blk ΔU hash function for ℓ block messages is $(d-1)+\ell / 2$.
(1) A new construction ECH (Encode-then-Hash-then-Combine). Requires matching $(d-1)+\ell / 2$ mult for $d \leq 4$.

Results and Outline of Rest of the Talk.

(1) Definition of Multiplication Complexity (MC).
(2) Answer 1. The MC for any "good" ΔU hash function for ℓ block messages is $\ell / 2$.
(3) Answer 1-d. The MC for any "good" d-blk ΔU hash function for ℓ block messages is $(d-1)+\ell / 2$.
(1) A new construction ECH (Encode-then-Hash-then-Combine). Requires matching $(d-1)+\ell / 2$ mult for $d \leq 4$.
(3) Future scope and Conclusion.

Multiplication Complexity: Algebraic Computation

(1) Algebraic computation C over variables $\mathbf{x}=\left(x_{1}, \ldots, x_{s}\right)$: sequence of addition and multiplications.

- All consecutive additions \rightarrow Linear function.
- multiplicands are linear functions of \mathbf{x} and v_{j} 's (result of previous multiplications).

Multiplication Complexity: Algebraic Computation

(1) Algebraic computation C over variables $\mathbf{x}=\left(x_{1}, \ldots, x_{s}\right)$: sequence of addition and multiplications.

- All consecutive additions \rightarrow Linear function.
- multiplicands are linear functions of \mathbf{x} and v_{j} 's (result of previous multiplications).
(2) Want to compute PDP $\left(m_{1}+K_{1}\right)\left(m_{2}+K_{2}\right)+\left(m_{3}+K_{3}\right)\left(m_{4}+K_{4}\right)$.
(1) $L_{1}=\left(m_{1}+K_{1}\right), L_{2}=\left(m_{2}+K_{2}\right), v_{1}=L_{1} \cdot L_{2}$.

Multiplication Complexity: Algebraic Computation

(1) Algebraic computation C over variables $\mathbf{x}=\left(x_{1}, \ldots, x_{s}\right)$: sequence of addition and multiplications.

- All consecutive additions \rightarrow Linear function.
- multiplicands are linear functions of \mathbf{x} and v_{j} 's (result of previous multiplications).
(2) Want to compute PDP $\left(m_{1}+K_{1}\right)\left(m_{2}+K_{2}\right)+\left(m_{3}+K_{3}\right)\left(m_{4}+K_{4}\right)$.
(1) $L_{1}=\left(m_{1}+K_{1}\right), L_{2}=\left(m_{2}+K_{2}\right), v_{1}=L_{1} \cdot L_{2}$.
(2) $L_{3}=\left(m_{3}+K_{3}\right), L_{4}=\left(m_{4}+K_{4}\right)$, (these do not use $\left.v_{1}\right)$.
(3) $v_{2}=L_{3} \cdot L_{4}$.

Multiplication Complexity: Algebraic Computation

(1) Algebraic computation C over variables $\mathbf{x}=\left(x_{1}, \ldots, x_{s}\right)$: sequence of addition and multiplications.

- All consecutive additions \rightarrow Linear function.
- multiplicands are linear functions of \mathbf{x} and v_{j} 's (result of previous multiplications).
(2) Want to compute PDP $\left(m_{1}+K_{1}\right)\left(m_{2}+K_{2}\right)+\left(m_{3}+K_{3}\right)\left(m_{4}+K_{4}\right)$.
(1) $L_{1}=\left(m_{1}+K_{1}\right), L_{2}=\left(m_{2}+K_{2}\right), v_{1}=L_{1} \cdot L_{2}$.
(2) $L_{3}=\left(m_{3}+K_{3}\right), L_{4}=\left(m_{4}+K_{4}\right)$, (these do not use $\left.v_{1}\right)$.
(3) $v_{2}=L_{3} \cdot L_{4}$.
(c) $L_{5}=v_{1}+v_{2}$.

Multiplication Complexity: Algebraic Computation

(1) Want to compute Poly-hash $m_{1} K+m_{2} K^{2}+m_{3} K^{3}$.

- $L_{1}=m_{3}, L_{2}=K, v_{1}=L_{1} \cdot L_{2}$.

Multiplication Complexity: Algebraic Computation

(1) Want to compute Poly-hash $m_{1} K+m_{2} K^{2}+m_{3} K^{3}$.

- $L_{1}=m_{3}, L_{2}=K, v_{1}=L_{1} \cdot L_{2}$.
- $L_{3}=v_{1}+m_{2}$, (here we use $\left.v_{1}\right), L_{4}=K$.
- $v_{2}=L_{3} \cdot L_{4}$.

Multiplication Complexity: Algebraic Computation

(1) Want to compute Poly-hash $m_{1} K+m_{2} K^{2}+m_{3} K^{3}$.

- $L_{1}=m_{3}, L_{2}=K, v_{1}=L_{1} \cdot L_{2}$.
- $L_{3}=v_{1}+m_{2}$, (here we use $\left.v_{1}\right), L_{4}=K$.
- $v_{2}=L_{3} \cdot L_{4}$.
- $L_{5}=v_{2}+m_{1}, L_{6}=K, v_{3}=L_{5} \cdot L_{6}$.
- $L_{7}=v_{3}$.

Multiplication Complexity: Algebraic Computation

(1) Want to compute Poly-hash $m_{1} K+m_{2} K^{2}+m_{3} K^{3}$.

- $L_{1}=m_{3}, L_{2}=K, v_{1}=L_{1} \cdot L_{2}$.
- $L_{3}=v_{1}+m_{2}$, (here we use $\left.v_{1}\right), L_{4}=K$.
- $v_{2}=L_{3} \cdot L_{4}$.
- $L_{5}=v_{2}+m_{1}, L_{6}=K, v_{3}=L_{5} \cdot L_{6}$.
- $L_{7}=v_{3}$.
(2) C with t mult can be described by $2 t+1$ linear functions: $L_{1}, \ldots, L_{2 t+1}$ mapping to $\mathbb{F}_{2^{n}}$.
(3) $L_{2 i-1}$ and $L_{2 i}$ are linear in \mathbf{x} and $v_{j}:=L_{2 j-1} \cdot L_{2 j}, 1 \leq j<i$.
(9) x_{i} 's will be key and message blocks.
(5) Constant multiplications. Efficient and linear.

Multiplication Complexity.

Algebraic computation: $C\left(x_{1}, \ldots, x_{s}\right)$.
(1) For $j=1$ to t
(2) $v_{j}:=L_{2 j-1}\left(x_{1}, \ldots, x_{s}, v_{1}, \ldots, v_{j-1}\right) \cdot L_{2 j}\left(x_{1}, \ldots, x_{s}, v_{1}, \ldots, v_{j-1}\right)$;
(3) Return $L_{2 t+1}\left(x_{1}, \ldots, x_{s}, v_{1}, \ldots, v_{t}\right)$;

We say that $C\left(x_{1}, \ldots, x_{s}\right)$ computes the polynomial $P\left(x_{1}, \ldots, x_{s}\right)$ if $L_{2 t+1}\left(x_{1}, \ldots, x_{s}, v_{1}, \ldots, v_{t}\right)=P$.

Definition (Multiplication complexity)

Multiplication complexity of a polynomial P is the minimum number of mult. over all algebraic computations computing P.

Multiplication Complexity for vector of Polynomials.

Algebraic computation: $C\left(x_{1}, \ldots, x_{s}\right)$ computing d polynomials.
(1) For $j=1$ to t
(2) $v_{j}:=L_{2 j-1}\left(x_{1}, \ldots, x_{s}, v_{1}, \ldots, v_{j-1}\right) \cdot L_{2 j}\left(x_{1}, \ldots, x_{s}, v_{1}, \ldots, v_{j-1}\right)$;
(3) Return $\left(L_{2 t+1}(\mathbf{x}, \mathbf{v}), \ldots, L_{2 t+d}(\mathbf{x}, \mathbf{v})\right.$; where $\mathbf{v}=\left(v_{1}, \ldots, v_{t}\right)$

We say that C computes the polynomial $\left(P_{1}, \ldots, P_{d}\right)$ if $L_{2 t+i}(\mathbf{x}, \mathbf{v})=P_{i}, 1 \leq i \leq d$.

Definition (Multiplication complexity)

Multiplication complexity of a vector of polynomial $\left(P_{1}, \ldots, P_{d}\right)$ is the minimum number of mult. over all algebraic computations computing $\left(P_{1}, \ldots, P_{d}\right)$.

Some Examples of Multiplication Complexity.

(1) Upper bound of MC: Construct an algebraic computation.
(2) Lower bound of MC : requires some tricks, not obvious.

Examples.

Some Examples of Multiplication Complexity.

(1) Upper bound of MC: Construct an algebraic computation.
(2) Lower bound of MC: requires some tricks, not obvious.

Examples.

(1) MC for x^{n} is $\log _{2} n$. Note that by multiplying c times we can get degree at most 2^{c}.
(2) Winograd had shown that MC for $m_{1} K_{1}+\ldots+m_{\ell} K_{\ell}$ is ℓ.
(3) MC for Topelitz construction based on ML is ℓd.

Lower Bound of MC.

(1) Lower bound of $M C(p)$ for any fixed polynomial p is not obvious.

Lower Bound of MC.

(1) Lower bound of $M C(p)$ for any fixed polynomial p is not obvious.
(2) Here we target apparently more harder questions.

What is $\min \{M C(p): p \in \mathcal{H}\}$ where \mathcal{H} is a family of polynomials having ΔU property?

Answer to Question-1.

Theorem

Let $t<\ell / 2$. Let C compute $H\left(K_{1}, \ldots, K_{r}, m_{1}, \ldots, m_{\ell}\right)$ with t multiplications (i.e., $M C(H) \leq t$) then $\exists \mathbf{m} \neq \mathbf{m}^{\prime} \in \mathbb{F}_{2^{n}}^{\ell}, \delta \in \mathbb{F}_{2^{n}}$,

$$
\operatorname{Pr}\left[H_{\mathbf{K}}(\mathbf{m}) \oplus H_{\mathbf{K}}\left(\mathbf{m}^{\prime}\right)=\delta\right]=1
$$

Corollary

$M C(P D P)=\ell / 2$, and it is optimum.

BRW (Bernstein-Rabin-Winograd) is also optimum (single key, but about $\ell 2^{-n}-\Delta U$.

Answer to Question-1.

Theorem

Let $t<\ell / 2$. Let C compute $H\left(K_{1}, \ldots, K_{r}, m_{1}, \ldots, m_{\ell}\right)$ with t multiplications (i.e., $M C(H) \leq t$) then $\exists \mathbf{m} \neq \mathbf{m}^{\prime} \in \mathbb{F}_{2^{n}}^{\ell}, \delta \in \mathbb{F}_{2^{n}}$,

$$
\operatorname{Pr}\left[H_{\mathbf{K}}(\mathbf{m}) \oplus H_{\mathbf{K}}\left(\mathbf{m}^{\prime}\right)=\delta\right]=1
$$

Proof Sketch.

(1) We define a function V maps \mathbf{m}, \mathbf{K} to $\left(v_{1}, \ldots, v_{2 t}\right)$.
(2) Using linearity and m has more than $2 t$ choices we find a differential pair of V with probability 1 .
(3) The same pair leads differential pair for H (possibly with different difference).

Answer to Question 1-d.

Theorem

Let $t<\ell / 2+r, r \leq d$. Let C compute a vector of d polynomials $H=\left(H_{1}, \ldots, H_{d}\right)$ with t multiplications then

$$
\exists \mathbf{m} \neq \mathbf{m}^{\prime} \in \mathbb{F}_{2^{n}}^{\ell}, \delta \in \mathbb{F}_{2^{n}}, \operatorname{Pr}\left[H_{\mathbf{K}}(\mathbf{m}) \oplus H_{\mathbf{K}}\left(\mathbf{m}^{\prime}\right)=\delta\right] \geq 2^{-n r}
$$

(1) If $r=d-1$ (or $t=\ell / 2+d-2$), we say that we only get differential probability about $2^{-n(d-1)}$ instead of $2^{-n d}$.
(2) $r=d \Rightarrow t \geq d-1+\ell / 2$ is the minimum number of mult (in $\mathbb{F}_{2^{n}}$) to get about $2^{-n d}-\Delta U$ hash which outputs $\mathbb{F}_{2^{n}}$.
(1) Can apply previous idea to find a differential pair for the first $v_{1}, \ldots, v_{t-r}($ as $2(t-r)<\ell)$.
(2) For remaining v_{i} 's $\left(r\right.$ such, i.e., $\left.v_{t-r+1}, \ldots, v_{t}\right)$ we claim that there must exist a difference with probability at least $2^{-n r}$ (the best difference, existential).
(3) This will eventually leads to differential pair for H with same probability.

Answer to the Final Question.

Encode-then-Hash-then-Combine:

(1) error correcting code: $e: D \rightarrow A^{\ell}$ with the minimum distance d.

MDS with systematic form such as $[I: V]$ where V is a Vandermonde Matrix.
(2) $\Delta \mathbf{U}$ hash: $h_{K}: A \rightarrow \mathbb{F}_{2^{n}}$ be an $\epsilon-\Delta U$.

$$
A=\mathbb{F}_{2^{n}}^{2} \text { and }\left(m_{1}, m_{2}\right) \mapsto\left(m_{1}+K_{1}\right)\left(m_{2}+K_{2}\right) .
$$

(3) Combiner: Let V be a matrix of dimension $d \times \ell$ whose entries are from $\mathbb{F}_{2^{n}}$ such that any d columns are linearly independent.

Vandermonde Matrix, again.

Input: $M \in D$.
Output: $\left(H_{1}, \ldots, H_{d}\right) \in \mathbb{F}_{2^{n}}^{d}$.
(1) $e(M)=\left(m_{1}, \ldots, m_{\ell}\right) \in A^{\ell}$.
(2) $h_{i}=h_{K_{i}}\left(m_{i}\right)$ for ℓ independent keys K_{i} 's, $1 \leq i \leq \ell$.
(3) $\left(H_{1}, \ldots, H_{d}\right)=\left(h_{1}, \ldots, h_{\ell}\right) \cdot V$, i.e.

$$
\left(\begin{array}{ccccc}
1 & 1 & \cdots & 1 & 1 \\
\alpha^{\ell-1} & \alpha^{\ell-2} & \cdots & \alpha & 1 \\
\vdots & \vdots & \vdots & \vdots & \\
\alpha^{(\ell-1)(d-1)} & \alpha^{(\ell-2)(d-1)} & \cdots & \alpha^{d-1} & 1
\end{array}\right)\left(\begin{array}{c}
h_{1} \\
h_{2} \\
\vdots \\
h_{\ell}
\end{array}\right)=\left(\begin{array}{c}
H_{1} \\
H_{2} \\
\vdots \\
H_{d}
\end{array}\right)
$$

Differential property of EHC.

- If $M \neq M^{\prime}$, then $\left(m_{1}, \ldots, m_{\ell}\right)$ and $\left(m_{1}, \ldots, m_{\ell}\right)$ differ at least in d positions (for simplicity assume the first d positions).
- Conditions all keys $K_{d+1}, \ldots, K_{\ell}$.
- The differential event implies that $\left(\Delta h_{K_{1}}\left(m_{1}\right), \ldots, \Delta h_{K_{d}}\left(m_{d}\right)\right) \cdot V^{\prime}=\delta^{\prime}$ where V^{\prime} is the first d columns of V and non-singular.
- Thus differential probability is at most ϵ^{d}.

Specific Choices of EHC for $d=2, \ell+2=2 \ell^{\prime}$.

(1) $M=\left(x_{1}, \ldots, x_{\ell^{\prime}}\right) \in \mathbb{F}_{2^{2 n}}^{\ell^{\prime}}$. We write $x_{i}=\left(m_{2 i-1}, m_{2 i}\right) \in \mathbb{F}_{2^{n}}^{2}$.
(2) $x_{\ell^{\prime}}=\oplus_{i} x_{i}=\left(m_{\ell^{\prime}-1}, m_{\ell^{\prime}}\right)$.
(3) $h_{K, K^{\prime}}\left(m, m^{\prime}\right)=(m \oplus K) \cdot\left(m^{\prime} \oplus K^{\prime}\right) \in \mathbb{F}_{2^{n}}$ (PDP).
(1) V is Vandermonde matrix with entries from $\mathbb{F}_{2^{n}}$.

$$
\left(\begin{array}{ccccc}
1 & 1 & \cdots & 1 & 1 \\
\alpha^{\ell-1} & \alpha^{\ell-2} & \cdots & \alpha & 1
\end{array}\right)
$$

(3) $H_{1}=\left(m_{1} \oplus K_{1}\right)\left(m_{2} \oplus K_{2}\right) \oplus \cdots \oplus\left(m_{\ell-1} \oplus K_{\ell-1}\right)\left(m_{\ell} \oplus K_{\ell}\right)$
(0) $H_{2}=\alpha^{\ell^{\prime}-1}\left(m_{1} \oplus K_{1}\right)\left(m_{2} \oplus K_{2}\right) \oplus \cdots \oplus\left(m_{\ell-1} \oplus K_{\ell-1}\right)\left(m_{\ell} \oplus K_{\ell}\right)$

Variable Length. Can be taken care by hashing length.

Specific Choices of EHC for $d=4$.

Comparison with Toeplitz, $d=4$ for PDP

(1) Provide tight matching bounds on multiplications for $\Delta \mathrm{U}$ hash functions, even for multi-block hash.
(2) A practical construction (hardware friendly, less area). Actual hardware performace yet to observe.
(3) Here we consider multiplication vs. message blocks. One can include error probability and study the relationship among these.

Thank You

