

Equivalent Key Recovery Attacks against HMAC and NMAC with Whirlpool Reduced to 7 Rounds

Jian Guo¹, <u>Yu Sasaki</u>², Lei Wang¹, Meiqin Wang³ and Long Wen³

1: Nanyang Technological University, Singapore
 2: NTT Secure Platform Laboratories, Japan
 3: Shandong University, China
 FSE 2014 (05/March/2014)

Initially discussed at ASK 2013 at Weihai

Research Summary

- Improved key recovery attack on HMAC-Whirlpool
- Convert MitM attacks on AES based ciphers into the known plaintext model.

Koy typo	#Rounds		Reference			
Key type	#nounds	Time	Memory	Data	reference	
Original Key	5	2^{402}	2^{384}	2^{384}	[14]	
	6	2^{496}	2^{448}	2^{384}	[14]	
Equivalent Keys	5	2^{448}	2^{377}	2^{321}	[14]	
	6	2^{451}	2^{448}	2^{384}	[14]	
	7	$(2^{490.3})$	2^{481}	$2^{481.7}$	Ours	
	5					
2 ⁴⁸²	^{.3} for can	nera-re	adv versi	on		

2

Whirlpool

- AES based 512-bit hash function proposed by Barreto and Rijmen in 2000
- Standardised by ISO
- Recommended by NESSIE
- Implemented in many cryptographic libraries
- Its usage in HMAC is also implemented.

More Structure on Whirlpool

- Narrow-pipe Merkle-Damgård iteration
- Compression function is built by Miyaguchi-Preneel mode with an AES based block-cipher.

HMAC

- Proposed by Bellare et al. in 1996 with a proof of being PRF up to the birthday order queries.
- Generating a MAC by two hash function calls

HMAC in CF Level

- Proposed by Bellare et al. in 1996 with a proof of being PRF up to the birthday order queries.
- Generating a MAC by two hash function calls

Initial Thoughts

- Previous key recovery attack on HMAC-Whirlpool is up to 6 rounds.
- At Eurocrypt 2013, Derbez et al. presented 7round key recovery attack on AES with a MitM attack in the chosen-plaintext model.
- Can we apply the MitM attack to 7-round HMAC-Whirlpool?
- The application is not easy!!

Overview

- Collect many pairs of (*pt*, *ct*) and run the MitM attack.
- K_{out} is used as a key input of the AES-based cipher. It should be recovered by the MitM attack.

Oifficulties of MitM Attack

• In HMAC, the attacker only can observe *tag* value.

Our Strategy for Difficulty 1

• In HMAC, the attacker only can observe *tag* value.

Our Strategy for Difficulty 3

• In HMAC, the attacker only can observe *tag* value.

MitM Attacks on AES Based Ciphers in Known Plaintext Model

אדד (Optimization) אדד Whirlpool Internal Block-cipher

- 8×8-byte state
- 10 rounds, with the last MixRows operation
- Similar operations between key and data

Notations: δ -set and *n*- δ -set

For a byte-oriented cipher, a δ -set is a set of 256 texts such that a byte takes all possible values among 256 texts (Active) and the other bytes take a fixed value (*Constant*) among 256 texts. If *n* bytes are active, we call it *n*- δ -set.

	δ -set							$12-\delta$ -set used					
A	С	С	С	С	С	С	С	4			C	C	
C	C	С	С	С	С	С	С			1 C	C	C	
C	C	С	С	С	С	С	С			C C	C	C	
C	C	С	С	С	С	С	С	C	<u> </u>	C C	C	<i>C</i>	
C	C	C	С	C	C	С	С	C	<u> </u>	C C	C	<i>C</i>	
C	C	C	С	C	C	С	С	C	<u> </u>	C C	C	C	
C	C	C	С	C	C	С	С	C	<u> </u>	<u>)</u> C	` C	<i>C</i>	
С	C	C	С	C	C	С	С	(<u> </u>	<u> </u>	` <u>C</u>	<i>C</i>	

in our attack

NTT Previous MitM Attack on AES (1/2)

- 7R characteristic: $4 \rightarrow 1 \rightarrow 4 \rightarrow 16 \rightarrow 4 \rightarrow 1 \rightarrow 4 \rightarrow 16$ E_{pre} E_{mid} E_{post}
- 4-round middle distinguisher

- Consider a function f which maps #X[0] to #Y[0]. The number of all possible such functions is $2^{8*256}=2^{2048}$
- For a pair of texts satisfying the characteristic, construct a δ-set by modifying #X[0], $(\delta_0, \delta_1, ..., \delta_{255})$. Then, $\{f(\delta_0), f(\delta_1), ..., f(\delta_{255})\}$ can take only 2⁸⁰ possibilities.

ONTT Previous MitM Attack on AES (2/2)

• 7-round characteristic

Offline: precompute 2⁸⁰ possibilities of distinguishers.

Online: collect pairs of plaintext and ciphertext satisfying the input and output differential forms.

- For each pair, guess sk_{pre} and change plaintext so that a δ -set is constructed at #X[0].

- For each modified plaintext, obtain the ciphertext.
- Guess sk_{post} and match precomputed distinguishers

Is It Applicable to HMAC-Whirlpool?

The answer is not obvious.

- Chosen-plaintext v.s. Known-plaintext
 - Cannot efficiently collect plaintext pairs
 - After constructing δ-set at #X[0], the corresponding ciphertext is obtained only probabilistically.
 (multi-set technique cannot be used)
- 4*4 state size v.s. 8*8 state size
 - Larger state of Whirlpool is easier to analyze

- (2⁻⁴⁶⁸ for multiset technique is no longer enough)

• Whirlpool key schedule is easier to analyze

Our Strategy

- Chosen-plaintext v.s. Known-plaintext
 - Cannot efficiently collect plaintext pairs
 Simply increasing the data amount.
 - After constructing δ-set at #X, the corresponding ciphertext is obtained only probabilistically.
 (multi-set technique cannot be used)

Use *n*- δ -set instead of δ -set \rightarrow more elements are examined, and enough elements will remain

NITM Attack on HMAC-Whirlpool (1/4)

- 7R characteristic: $32 \rightarrow 12 \rightarrow 24 \rightarrow 64 \rightarrow 8 \rightarrow 1 \rightarrow 8 \rightarrow 64$ $E_{pre} \qquad E_{mid} \qquad E_{post}$
- 4-round middle distinguisher

- Consider a function f which maps 12 bytes of #X to #Y[0]. The number of all such functions is so huge.
- For a pair of texts satisfying the characteristic, construct a 12-δset by modifying #X, $(\delta_0, \delta_1, ..., \delta_{2^{^96-1}})$. Then, $\{f(\delta_0), f(\delta_1), ..., f(\delta_{2^{^96-1}})\}$ takes 2³⁶⁰ possibilities.

NTT MitM Attack on HMAC-Whirlpool (2/4)

• 7-round characteristic

Offline: precompute 2³⁶⁰ possibilities of distinguishers.

Online: collect pairs of plaintext and ciphertext satisfying the input and output differential forms.

- For each pair, guess sk_{pre} and change plaintext so that a 12- δ -set is constructed at #X.

- For each modified plaintext, obtain the ciphertext.

- Guess sk_{post} and match precomputed distinguishers

MitM Attack on HMAC-Whirlpool (3/4)

1. Due to the known-plaintext model, only a part of 12- δ -set can be obtained.

2. Due to the conversion from *tag* to *ct*, *ct* is obtained only probabilistically.

can resolve by using more data

3. Cannot know which element of 12- δ -set is obtained. Cannot sort the precomputation table. (match cost \neq 1.)

- 2. For each modified plaintext, obtain the ciphertext.
 - Guess sk_{post} and match precomputed distinguishers

NITM MitM Attack on HMAC-Whirlpool (4/4)

• Previous attack only recovers up to #X.

NITM MitM Attack on HMAC-Whirlpool (4/4)

- Previous attack only recovers up to #X.
- In Whirlpool, we know more bytes. By guessing more bytes at #X', we can recover all bytes which are index of 2³⁶⁰ distinguisher.
- The match is done for the sorted data.

- The best diff characteristic and the number of $n-\delta$ -set were searched by programming.
- An optimization technique for making conversion table from *tag* to *v*.
- (Time, Mem, Data) = $(2^{490.3}, 2^{481}, 2^{481.3})$ $\Rightarrow 2^{482.3}$ for camera-ready
- K_{in} recovery is easier because it is CPA, not KPA.

Concluding Remarks

- 7-round key recovery attack on HMAC-Whirlpool
- Based on MitM attack on AES, but many different problems and many optimizations for HMAC and AES-based compression functions
- Application to Sandwich-MAC still opens.
 - needs unknown plaintext recovery with different keys

