Security Notions for Bidirectional Channels

Giorgia Azzurra Marson Bertram Poettering

FSE 2017 Tokyo, Japan

Outline

Secure channels and how they are modeled

Security notions for bidirectional channels

Analysis of bidirectional channel design

Communication channels

- setting: two-party communication over the Internet
- goal: deliver messages and preserve sending order
- how to achieve this: TCP/IP

Good, if there are only Alice and Bob (idealized world)

- setting: two-party communication over the Internet
- goal: protect communication from adversaries

- setting: two-party communication over the Internet
- goal: protect communication from adversaries
- security (informally): prevent eavesdropping

- setting: two-party communication over the Internet
- goal: protect communication from adversaries
- security (informally): prevent eavesdropping and manipulation

- setting: two-party communication over the Internet
- goal: protect communication from adversaries
- security (informally): prevent eavesdropping and manipulation

- setting: two-party communication over the Internet
- goal: protect communication from adversaries
- security (informally): prevent eavesdropping and manipulation

Confidentiality

- intuitively: ciphertext hides plaintext
- formally: IND-CPA (a.k.a. 'passive')

Confidentiality

- intuitively: ciphertext hides plaintext
- formally: IND-CPA (a.k.a. 'passive') and IND-CCA (a.k.a. 'active')

Confidentiality

- intuitively: ciphertext hides plaintext
- formally: IND-CPA (a.k.a. 'passive') and IND-CCA (a.k.a. 'active')

Integrity

- intuitively: manipulations are detected
- formally: INT-PTXT

Confidentiality

- intuitively: ciphertext hides plaintext
- formally: IND-CPA (a.k.a. 'passive') and IND-CCA (a.k.a. 'active')

Integrity

- intuitively: manipulations are detected
- formally: INT-PTXT and INT-CTXT

Confidentiality

- intuitively: ciphertext hides plaintext
- formally: IND-CPA (a.k.a. 'passive') and IND-CCA (a.k.a. 'active')

Integrity

- intuitively: manipulations are detected
- formally: INT-PTXT and INT-CTXT

both incorporate replay and reordering protection

Cryptographic channels in theory: state of the art

- channel security: IND-CPA + INT-CTXT (\Longrightarrow IND-CCA)
- also called 'stateful authenticated encryption' (stateful AE)
- introduced to analyze (and prove) SSH channel security [BKN02]
- reference model to analyse TLS [JKSS12,KPW13,...]

Cryptographic channels in theory: state of the art

- channel security: IND-CPA + INT-CTXT (\Longrightarrow IND-CCA)
- also called 'stateful authenticated encryption' (stateful AE)
- introduced to analyze (and prove) SSH channel security [BKN02]
- reference model to analyse TLS [JKSS12,KPW13,...]

stateful AE considered good abstraction of a secure channel

Channels are used for bidirectional communication

- prior work: 'Sender \rightarrow Receiver' communication
- practice: channels protect bidirectional communication
- standard approach employs two independent unidirectional channels

canonic composition of unidirectional channels

Channels are used for bidirectional communication

- prior work: 'Sender \rightarrow Receiver' communication
- practice: channels protect bidirectional communication
- standard approach employs two independent unidirectional channels
- does this yield a secure bidirectional channel?
- folklore: unidirectional security \Longrightarrow bidirectional security

canonic composition of unidirectional channels

Channels are used for bidirectional communication

- prior work: 'Sender \rightarrow Receiver' communication
- practice: channels protect bidirectional communication
- standard approach employs two independent unidirectional channels
- does this yield a secure bidirectional channel?
- folklore: unidirectional security \Longrightarrow bidirectional security

what does it mean 'bidirectional security'?

Our contribution in a nutshell

Defining bidirectional security

- confidentiality: IND-2-CPA, IND-2-CCA
- integrity: INT-2-PTXT, INT-2-CTXT
- notions reflect that \rightarrow and \leftarrow are not independent of each other

Our contribution in a nutshell

Defining bidirectional security

- confidentiality: IND-2-CPA, IND-2-CCA
- integrity: INT-2-PTXT, INT-2-CTXT
- notions reflect that \rightarrow and \leftarrow are not independent of each other

Relations among notions

- INT-2-CTXT \implies INT-2-PTXT
- IND-2-CCA \implies IND-2-CPA
- $INT-2-CTXT + IND-2-CPA \Longrightarrow IND-2-CCA$

Our contribution in a nutshell

Defining bidirectional security

- confidentiality: IND-2-CPA, IND-2-CCA
- integrity: INT-2-PTXT, INT-2-CTXT
- notions reflect that \rightarrow and \leftarrow are not independent of each other

Relations among notions

- INT-2-CTXT \implies INT-2-PTXT
- IND-2-CCA \implies IND-2-CPA
- $INT-2-CTXT + IND-2-CPA \Longrightarrow IND-2-CCA$

Analysis of the canonic composition

- question: can security be lifted from unidirectional components?
- our results question common belief...

active \approx deviation from honest behavior

manipulation of ciphertexts or of their order (akin to unidirectional setting)

active \approx deviation from honest behavior

manipulation of ciphertexts or of their order (akin to unidirectional setting)

active \approx deviation from honest behavior

manipulation of ciphertexts or of their order (akin to unidirectional setting)

active \approx deviation from honest behavior

manipulation of ciphertexts or of their order (akin to unidirectional setting)

Our model additionally allows to express that:

• 'passive' query may chronologically follow 'active' query (concurrency)

active \approx deviation from honest behavior

manipulation of ciphertexts or of their order (akin to unidirectional setting)

Our model additionally allows to express that:

• 'passive' query may chronologically follow 'active' query (concurrency)

active \approx deviation from honest behavior

manipulation of ciphertexts or of their order (akin to unidirectional setting)

Our model additionally allows to express that:

- 'passive' query may chronologically follow 'active' query (concurrency)
- active attack on \leftarrow may influence security of \rightarrow

Bidirectional security of the canonic composition

Generic analysis: can security be lifted from unidirectional components?

- $INT-PTXT + INT-PTXT \implies INT-2-PTXT$
- $INT-CTXT + INT-CTXT \implies INT-2-CTXT$
- IND-CPA + IND-CPA \implies INT-2-CPA

Bidirectional security of the canonic composition

Generic analysis: can security be lifted from unidirectional components?

- $INT-PTXT + INT-PTXT \implies INT-2-PTXT$
- $INT-CTXT + INT-CTXT \implies INT-2-CTXT$
- IND-CPA + IND-CPA \implies INT-2-CPA
- IND-CCA + IND-CCA \Rightarrow INT-2-CCA

Bidirectional security of the canonic composition

Generic analysis: can security be lifted from unidirectional components?

- $INT-PTXT + INT-PTXT \implies INT-2-PTXT$
- INT-CTXT + INT-CTXT \implies INT-2-CTXT
- IND-CPA + IND-CPA \implies INT-2-CPA
- IND-CCA + IND-CCA \implies INT-2-CCA
- Bidirectional security of TLS and SSH (the good news)
 - TLS and SSH channel offer stateful AE security [K01,BKN02,PRS11] Encode-then-E&M for SSH, CBC-based M-then-E for TLS
 - our result: they also offer IND-2-CCA and INT-2-CTXT security

IND-2-CCA

Summary

This work

- formalize security notions for bidirectional channels
- analyze 'canonic composition'
- confirm security of (crypto core of) TLS and SSH channels

Summary

This work

- formalize security notions for bidirectional channels
- analyze 'canonic composition'
- confirm security of (crypto core of) TLS and SSH channels

Future work & open questions

- channel security in a multi-party setting (work in progress)
- bidirectional security of real TLS and SSH (beyond crypto core)

Summary

This work

- formalize security notions for bidirectional channels
- analyze 'canonic composition'
- confirm security of (crypto core of) TLS and SSH channels

Future work & open questions

- channel security in a multi-party setting (work in progress)
- bidirectional security of real TLS and SSH (beyond crypto core)

Send
$$(u, m^0, m^1)$$

 $c^* \leftarrow \text{Send}(\text{st}_u, m^b)$
if $h_u = \text{True}$
 $C_u[s_u] \leftarrow c^*$
 $s_u \leftarrow s_u + 1$
Return c^*

 $\begin{aligned} \textbf{Recv} & (u, c) \\ & m \leftarrow \text{Recv}(\text{st}_u, c) \\ & \text{if } r_u < s_v \text{ and } c = C_v[r_u] \\ & r_u \leftarrow r_u + 1 \\ & \text{else} \\ & h_u \leftarrow \text{False} \\ & \text{Return } h_u? \diamond : m \end{aligned}$

Send
$$(u, m^0, m^1)$$

 $c^* \leftarrow \text{Send}(\mathsf{st}_u, m^b)$
if $h_u = \text{True}$
 $C_u[s_u] \leftarrow c^*$
 $s_u \leftarrow s_u + 1$
Return c^*

 $\begin{aligned} \textbf{Recv} & (u, c) \\ & m \leftarrow \text{Recv}(\text{st}_u, c) \\ & \text{if } r_u < s_v \text{ and } c = C_v[r_u] \\ & r_u \leftarrow r_u + 1 \\ & \text{else} \\ & h_u \leftarrow \text{False} \\ & \text{Return } h_u? \diamond : m \end{aligned}$

Send
$$(u, m^0, m^1)$$

 $c^* \leftarrow \text{Send}(\text{st}_u, m^b)$
if $h_u = \text{True}$
 $C_u[s_u] \leftarrow c^*$
 $s_u \leftarrow s_u + 1$
Return c^*

Recv (u, c) $m \leftarrow \text{Recv}(\text{st}_u, c)$ if $r_u < s_v$ and $c = C_v[r_u]$ $r_u \leftarrow r_u + 1$ else $h_u \leftarrow \text{False}$ Return $h_u? \diamond : m$

$$\begin{array}{l} \textbf{Send} \ (u, m^0, m^1) \\ c^* \leftarrow \textsf{Send}(\textsf{st}_u, m^b) \\ \textsf{if} \ h_u = \textsf{True} \\ C_u[s_u] \leftarrow c^* \\ s_u \leftarrow s_u + 1 \\ \textsf{Return} \ c^* \end{array}$$

 $\begin{aligned} \textbf{Recv} & (u, c) \\ & m \leftarrow \text{Recv}(\text{st}_u, c) \\ & \text{if } r_u < s_v \text{ and } c = C_v[r_u] \\ & r_u \leftarrow r_u + 1 \\ & \text{else} \\ & h_u \leftarrow \text{False} \\ & \text{Return } h_u? \diamond : m \end{aligned}$

Send
$$(u, m^0, m^1)$$

 $c^* \leftarrow \text{Send}(\text{st}_u, m^b)$
if $h_u = \text{True}$
 $C_u[s_u] \leftarrow c^*$
 $s_u \leftarrow s_u + 1$
Return c^*

 $\begin{aligned} \textbf{Recv} & (u, c) \\ & m \leftarrow \text{Recv}(\text{st}_u, c) \\ & \text{if } r_u < s_v \text{ and } c = C_v[r_u] \\ & r_u \leftarrow r_u + 1 \\ & \text{else} \\ & h_u \leftarrow \text{False} \\ & \text{Return } h_u? \diamond : m \end{aligned}$

Send
$$(u, m^0, m^1)$$

 $c^* \leftarrow \text{Send}(\text{st}_u, m^b)$
if $h_u = \text{True}$
 $C_u[s_u] \leftarrow c^*$
 $s_u \leftarrow s_u + 1$
Return c^*

Recv (u, c) $m \leftarrow \text{Recv}(\text{st}_u, c)$ if $r_u < s_v$ and $c = C_v[r_u]$ $r_u \leftarrow r_u + 1$ else $h_u \leftarrow \text{False}$ Return $h_u? \diamond : m$

