
Very-Efficient Simulatable Flipping
of Many Coins into-a-Well

(and a New Universally-Composable Commitment Scheme)

Presented at Public Key Cryptography

March 09, 2016 @ Taipei, Taiwan

PORTUGAL

Luís Brandão1,2,*

1University of Lisbon (Portugal)
2Carnegie Mellon University (USA)

Supported as a Ph.D. student at FCUL-DI and CMU-ECE by
the Fundação para a Ciência e a Tecnologia (FCT) (Portuguese
Foundation for Science and Technology) through the Carnegie
Mellon Portugal Program, under Grant SFRH/BD/33770/2009.

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Roadmap

1. Simulatable coin-flipping and commitments

2. Protocol #1: coin-flipping (simulatable with rewinding)

3. Protocol #2: UC Commitment Scheme

4. Open questions / research directions

2

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Roadmap

1. Simulatable coin-flipping and commitments

2. Protocol #1: coin-flipping (simulatable with rewinding)

3. Protocol #2: UC Commitment Scheme

4. Open questions / research directions

2

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

An ideal coin-flipping

3

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

An ideal coin-flipping

PA=Alice PB=Bob

TTP

Legend:
TTP = trusted third party

3

Environment

0. Start C
oinFlip(PA, PB, |m

|) 0. Start CoinFlip(PA , PB , |m|)

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

An ideal coin-flipping

PA=Alice PB=Bob1. Start 1. Start

TTP

Legend:
TTP = trusted third party

m= ...

3

Environment

0. Start C
oinFlip(PA, PB, |m

|) 0. Start CoinFlip(PA , PB , |m|)

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

An ideal coin-flipping

PA=Alice PB=Bob1. Start 1. Start

3a. Accept
TTP

into-a-well

2.m

Legend:
TTP = trusted third party

m= ...

3

Environment

0. Start C
oinFlip(PA, PB, |m

|) 0. Start CoinFlip(PA , PB , |m|)

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

An ideal coin-flipping

PA=Alice PB=Bob1. Start 1. Start

3a. Accept 3b. m
(Only if PA accepted)TTP

into-a-well

2.m

Legend:
TTP = trusted third party

m= ...

3

Environment

0. Start C
oinFlip(PA, PB, |m

|) 0. Start CoinFlip(PA , PB , |m|)

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

An ideal coin-flipping

PA=Alice PB=Bob1. Start 1. Start

3a. Accept 3b. m
(Only if PA accepted)TTP

into-a-well

2.m

Legend:
TTP = trusted third party

m= ...

3

Environment

0. Start C
oinFlip(PA, PB, |m

|) 0. Start CoinFlip(PA , PB , |m|)4. m
4. m

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

An ideal coin-flipping

PA=Alice PB=Bob1. Start 1. Start

3a. Accept 3b. m
(Only if PA accepted)TTP

Example motivations
● Real world decisions (e.g., who gets the car? [Blum83])
● Enable probabilistic output of external two-party protocol
● Random string (e.g., CRS) for another simulatable protocol

into-a-well

2.m

Legend:
TTP = trusted third party
CRS = common reference string

m= ...

3

Environment

0. Start C
oinFlip(PA, PB, |m

|) 0. Start CoinFlip(PA , PB , |m|)4. m
4. m

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

An ideal coin-flipping

PA=Alice PB=Bob1. Start 1. Start

3a. Accept 3b. m
(Only if PA accepted)TTP

Research question: How to perform two-party coin-flipping, i.e., without TTP,
efficiently for many coins in parallel, within the ideal/real simulation paradigm?

Example motivations
● Real world decisions (e.g., who gets the car? [Blum83])
● Enable probabilistic output of external two-party protocol
● Random string (e.g., CRS) for another simulatable protocol

into-a-well

2.m

Legend:
TTP = trusted third party
CRS = common reference string

m= ...

3

Environment

0. Start C
oinFlip(PA, PB, |m

|) 0. Start CoinFlip(PA , PB , |m|)4. m
4. m

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

An ideal coin-flipping

PA=Alice PB=Bob1. Start 1. Start

3a. Accept 3b. m
(Only if PA accepted)TTP

Research question: How to perform two-party coin-flipping, i.e., without TTP,
efficiently for many coins in parallel, within the ideal/real simulation paradigm?

Example motivations
● Real world decisions (e.g., who gets the car? [Blum83])
● Enable probabilistic output of external two-party protocol
● Random string (e.g., CRS) for another simulatable protocol

into-a-well

2.m

Legend:
TTP = trusted third party
CRS = common reference string

m= ...

3

Environment

0. Start C
oinFlip(PA, PB, |m

|) 0. Start CoinFlip(PA , PB , |m|)4. m
4. m

(Adversarial model: static, malicious, computational)

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

An early two-party coin-flipping protocol [Blum81-83]

Alice Bob

= ... = ...

4

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

1. Commit Alice’s contribution

(Hiding,
Binding)

(mA)

An early two-party coin-flipping protocol [Blum81-83]

Alice Bob

= ... = ...

4

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

1. Commit Alice’s contribution

(Hiding,
Binding)

(mA)

2. Send Bob’s contribution

(mB)

An early two-party coin-flipping protocol [Blum81-83]

Alice Bob

= ... = ...

4

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

1. Commit Alice’s contribution

(Hiding,
Binding)

(mA)

2. Send Bob’s contribution

(mB)

3. Open Alice’s contribution

Open()
(mA)

An early two-party coin-flipping protocol [Blum81-83]

Alice Bob

= ... = ...

4

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

1. Commit Alice’s contribution

(Hiding,
Binding)

(mA)

2. Send Bob’s contribution

(mB)

4. Locally combine (XOR) the two contributions

 (m = mA  mB)

3. Open Alice’s contribution

Open()
(mA)

An early two-party coin-flipping protocol [Blum81-83]

Alice Bob

= ... = ...

4

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

1. Commit Alice’s contribution

(Hiding,
Binding)

(mA)

2. Send Bob’s contribution

(mB)

4. Locally combine (XOR) the two contributions

 (m = mA  mB)

3. Open Alice’s contribution

Open()
(mA)

An early two-party coin-flipping protocol [Blum81-83]

Alice Bob

= ... = ...

4

Simulatability  In a simulation, the Simulator (Sim) can induce
any desired outcome (the one decided by TTP in ideal world).

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

1. Commit Alice’s contribution

(Hiding,
Binding)

(mA)

2. Send Bob’s contribution

(mB)

4. Locally combine (XOR) the two contributions

 (m = mA  mB)

3. Open Alice’s contribution

Open()
(mA)

Extract Alice's
contribution

Simulator

An early two-party coin-flipping protocol [Blum81-83]

Alice Bob

= ... = ...

4

Simulatability  In a simulation, the Simulator (Sim) can induce
any desired outcome (the one decided by TTP in ideal world).

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

1. Commit Alice’s contribution

(Hiding,
Binding)

(mA)

2. Send Bob’s contribution

(mB)

4. Locally combine (XOR) the two contributions

 (m = mA  mB)

3. Open Alice’s contribution

Open()
(mA)

Simulator

Equivocate
Alice’s needed

contribution

Extract Alice's
contribution

Simulator

An early two-party coin-flipping protocol [Blum81-83]

Alice Bob

= ... = ...

4

Simulatability  In a simulation, the Simulator (Sim) can induce
any desired outcome (the one decided by TTP in ideal world).

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

1. Commit Alice’s contribution

(Hiding,
Binding)

(mA)

2. Send Bob’s contribution

(mB)

4. Locally combine (XOR) the two contributions

 (m = mA  mB)

3. Open Alice’s contribution

Open()
(mA)

Simulator

Equivocate
Alice’s needed

contribution

Extract Alice's
contribution

Simulator

An early two-party coin-flipping protocol [Blum81-83]

Alice Bob

= ... = ...

4

Blum used an Equiv-but-
not-Ext Com scheme. (Yet,

using rewinding, SimB can non-

local Ext mA, but problem if

PA’s Prob-Abort is unknown.)

Simulatability  In a simulation, the Simulator (Sim) can induce
any desired outcome (the one decided by TTP in ideal world).

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Example of an Ext-and-Equiv Com Scheme [Lin03]

5

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Example of an Ext-and-Equiv Com Scheme [Lin03]

5

Sender Receiver

Commit phase:

Open phase:

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Example of an Ext-and-Equiv Com Scheme [Lin03]

5

Sender Receiver

Commit phase:

Open phase:

, ZKAoK (mA)

mA

(Hiding, Binding)

Legend:
ZKA = Zero-Knowledge Argument
ZKAoK = ZKA of knowledge

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Example of an Ext-and-Equiv Com Scheme [Lin03]

5

Sender Receiver

Commit phase:

Open phase:

, ZKAoK (mA)

mA

(Hiding, Binding)

mA, ZKA (mA is committed by)

Legend:
ZKA = Zero-Knowledge Argument
ZKAoK = ZKA of knowledge

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Example of an Ext-and-Equiv Com Scheme [Lin03]

Another example: [PW09] achieve Ext&Equiv via cut-and-choose methods.

5

Sender Receiver

Commit phase:

Open phase:

, ZKAoK (mA)

mA

(Hiding, Binding)

mA, ZKA (mA is committed by)

Legend:
ZKA = Zero-Knowledge Argument
ZKAoK = ZKA of knowledge

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Example of an Ext-and-Equiv Com Scheme [Lin03]

Another example: [PW09] achieve Ext&Equiv via cut-and-choose methods.

5

Sender Receiver

Commit phase:

Open phase:

, ZKAoK (mA)

mA

(Hiding, Binding)

mA, ZKA (mA is committed by)

Legend:
ZKA = Zero-Knowledge Argument
ZKAoK = ZKA of knowledge

Problem: expensive in computational and/or communication terms

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Example of an Ext-and-Equiv Com Scheme [Lin03]

Another example: [PW09] achieve Ext&Equiv via cut-and-choose methods.

5

Sender Receiver

Commit phase:

Open phase:

, ZKAoK (mA)

mA

(Hiding, Binding)

mA, ZKA (mA is committed by)

Legend:
ZKA = Zero-Knowledge Argument
ZKAoK = ZKA of knowledge

Problem: expensive in computational and/or communication terms

Can we make it more efficient?

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Example of an Ext-and-Equiv Com Scheme [Lin03]

Another example: [PW09] achieve Ext&Equiv via cut-and-choose methods.

5

Sender Receiver

Commit phase:

Open phase:

, ZKAoK (mA)

mA

(Hiding, Binding)

mA, ZKA (mA is committed by)

Legend:
ZKA = Zero-Knowledge Argument
ZKAoK = ZKA of knowledge

Note: [Lin03] actually uses this construction in the scope of a more
general coin-flipping into a well, where PA only learns f(mA  mB) .

Problem: expensive in computational and/or communication terms

Can we make it more efficient?

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Initial intuition (insufficient)

6

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Initial intuition (insufficient)

6

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Initial intuition (insufficient)

6

Want to
commit

large
message

Sender Receiver

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Initial intuition (insufficient)

6

Ext-Com of seed

Ext-
Com

Short seed

Want to
commit

large
message

Sender Receiver

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Initial intuition (insufficient)

6

Ext-Com of seed Long mask

PRG
Ext-
Com

Short seed

Want to
commit

large
message

Sender Receiver

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Initial intuition (insufficient)

6


Ext-Com of seed Long messageLong mask

PRG
Ext-
Com

Short seed

Want to
commit

large
message

Sender Receiver

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Initial intuition (insufficient)

6


Ext-Com of seed Long messageLong mask

PRG
Ext-
Com

Short seed

Ext-Com of message
(Akin to hybrid-encryption)

Want to
commit

large
message

Sender Receiver

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Initial intuition (insufficient)

6


Long messageLong mask

Want to
commit

large
message

Sender Receiver

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Initial intuition (insufficient)

6


Long messageLong mask

CR-Hash

Short hash

Want to
commit

large
message

Sender Receiver

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Initial intuition (insufficient)

6


Equiv-Com of hashLong messageLong mask

CR-Hash
Equiv-
Com

Short hash

Want to
commit

large
message

Sender Receiver

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Initial intuition (insufficient)

6


Equiv-Com of hashLong messageLong mask

CR-Hash
Equiv-
Com

Short hash

Equiv-Com of message
(Akin to hash-then-sign)

Want to
commit

large
message

Sender Receiver

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Initial intuition (insufficient)

6


Ext-Com of seed Equiv-Com of hashLong messageLong mask

CR-Hash
Equiv-
Com

Ext-
Com

Short seed Short hash

Ext-Com of message
(Akin to hybrid-encryption)

Equiv-Com of message
(Akin to hash-then-sign)

Want to
commit

large
message

Sender Receiver

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Initial intuition (insufficient)

NOT an Ext-&-Equiv Com of the message:
- Opening the Ext-Com of seed does not allow equivocation
- Removing the Ext-Com of seed would not allow extraction

6


Ext-Com of seed Equiv-Com of hashLong messageLong mask

CR-Hash
Equiv-
Com

Ext-
Com

Short seed Short hash

Ext-Com of message
(Akin to hybrid-encryption)

Equiv-Com of message
(Akin to hash-then-sign)

Want to
commit

large
message

Sender Receiver

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Initial intuition (insufficient)

NOT an Ext-&-Equiv Com of the message:
- Opening the Ext-Com of seed does not allow equivocation
- Removing the Ext-Com of seed would not allow extraction

6

This presentation – how to efficiently combine Ext and Equiv (for many bits)?


Ext-Com of seed Equiv-Com of hashLong messageLong mask

CR-Hash
Equiv-
Com

Ext-
Com

Short seed Short hash

Ext-Com of message
(Akin to hybrid-encryption)

Equiv-Com of message
(Akin to hash-then-sign)

Want to
commit

large
message

Sender Receiver

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Initial intuition (insufficient)

NOT an Ext-&-Equiv Com of the message:
- Opening the Ext-Com of seed does not allow equivocation
- Removing the Ext-Com of seed would not allow extraction

6

This presentation – how to efficiently combine Ext and Equiv (for many bits)?
● Prot #1: Coin-flipping simulatable-with-rewinding


Ext-Com of seed Equiv-Com of hashLong messageLong mask

CR-Hash
Equiv-
Com

Ext-
Com

Short seed Short hash

Ext-Com of message
(Akin to hybrid-encryption)

Equiv-Com of message
(Akin to hash-then-sign)

Want to
commit

large
message

Sender Receiver

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Initial intuition (insufficient)

NOT an Ext-&-Equiv Com of the message:
- Opening the Ext-Com of seed does not allow equivocation
- Removing the Ext-Com of seed would not allow extraction

6

This presentation – how to efficiently combine Ext and Equiv (for many bits)?
● Prot #1: Coin-flipping simulatable-with-rewinding
● Prot #2: UC-Com scheme (namely without rewinding)


Ext-Com of seed Equiv-Com of hashLong messageLong mask

CR-Hash
Equiv-
Com

Ext-
Com

Short seed Short hash

Ext-Com of message
(Akin to hybrid-encryption)

Equiv-Com of message
(Akin to hash-then-sign)

Want to
commit

large
message

Sender Receiver

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Roadmap

1. Simulatable coin-flipping and commitments

2. Protocol #1: coin-flipping (simulatable with rewinding)

3. Protocol #2: UC Commitment Scheme

4. Open questions / research directions

7

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Different constructions (high level)

8

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Different constructions (high level)
[Blum81-83] This paper[Lin03], [PW09]

8

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Different constructions (high level)
[Blum81-83] This paper[Lin03], [PW09]

8

PA PB

mB

mA
(Equiv)

mA
(Equiv)

m = mA  mB

1.

3.

2.

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Different constructions (high level)
[Blum81-83] This paper[Lin03], [PW09]

8

PA PB

mB

mA
(Equiv)

mA
(Equiv)

m = mA  mB

1.

3.

2.

Problem: Can’t ensure
 Prob() in ideal vs.
real world. In step 3, PA-
Prob() before SimB
RW may (pathologic-
ally) differ from PA-
Prob() after RW.

Legend: RW = rewind; Prob() = probability of abort.

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Different constructions (high level)
[Blum81-83] This paper[Lin03], [PW09]

8

PA PB

mB

mA
(Equiv)

mA
(Equiv)

m = mA  mB

1.

3.

2.

PA PB

mB

mA
(Ext&Equiv)

mA
(Ext&Equiv)

m = mA  mB

1.

3.

2.

Problem: Can’t ensure
 Prob() in ideal vs.
real world. In step 3, PA-
Prob() before SimB
RW may (pathologic-
ally) differ from PA-
Prob() after RW.

Legend: RW = rewind; Prob() = probability of abort.

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Different constructions (high level)
[Blum81-83] This paper[Lin03], [PW09]

● Lin03: ZK-based
● PW09: Cut&Choose based

8

Simulatable, but inefficient
for large |m|.

PA PB

mB

mA
(Equiv)

mA
(Equiv)

m = mA  mB

1.

3.

2.

PA PB

mB

mA
(Ext&Equiv)

mA
(Ext&Equiv)

m = mA  mB

1.

3.

2.

Problem: Can’t ensure
 Prob() in ideal vs.
real world. In step 3, PA-
Prob() before SimB
RW may (pathologic-
ally) differ from PA-
Prob() after RW.

Legend: RW = rewind; Prob() = probability of abort.

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Different constructions (high level)
[Blum81-83] This paper[Lin03], [PW09]

● Lin03: ZK-based
● PW09: Cut&Choose based

8

Simulatable, but inefficient
for large |m|.

PA PB

mB

mA
(Equiv)

mA
(Equiv)

m = mA  mB

1.

3.

2.

PA PB

mB

mA
(Ext&Equiv)

mA
(Ext&Equiv)

m = mA  mB

1.

3.

2.

PA PB

mB
(Equiv)

mA
(Ext)

mA
(Ext)

mB
(Equiv)

m = mA  mB

1.

3.

2.

4.

Problem: Can’t ensure
 Prob() in ideal vs.
real world. In step 3, PA-
Prob() before SimB
RW may (pathologic-
ally) differ from PA-
Prob() after RW.

Legend: RW = rewind; Prob() = probability of abort.

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Different constructions (high level)
[Blum81-83] This paper[Lin03], [PW09]

● Lin03: ZK-based
● PW09: Cut&Choose based

8

Simulatable, but inefficient
for large |m|.

Ext-Com and Equiv-Com are efficient

PA PB

mB

mA
(Equiv)

mA
(Equiv)

m = mA  mB

1.

3.

2.

PA PB

mB

mA
(Ext&Equiv)

mA
(Ext&Equiv)

m = mA  mB

1.

3.

2.

PA PB

mB
(Equiv)

mA
(Ext)

mA
(Ext)

mB
(Equiv)

m = mA  mB

1.

3.

2.

4.

Problem: Can’t ensure
 Prob() in ideal vs.
real world. In step 3, PA-
Prob() before SimB
RW may (pathologic-
ally) differ from PA-
Prob() after RW.

Legend: RW = rewind; Prob() = probability of abort.

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Different constructions (high level)
[Blum81-83] This paper[Lin03], [PW09]

● Lin03: ZK-based
● PW09: Cut&Choose based

Simulatability: In the difficult side,
Prob() by PB (step 3) may depend on
Com(mA), but not on clear mA. Can be
simulated in Expected-Poly # RWs.

8

Simulatable, but inefficient
for large |m|.

Ext-Com and Equiv-Com are efficient

PA PB

mB

mA
(Equiv)

mA
(Equiv)

m = mA  mB

1.

3.

2.

PA PB

mB

mA
(Ext&Equiv)

mA
(Ext&Equiv)

m = mA  mB

1.

3.

2.

PA PB

mB
(Equiv)

mA
(Ext)

mA
(Ext)

mB
(Equiv)

m = mA  mB

1.

3.

2.

4.

Problem: Can’t ensure
 Prob() in ideal vs.
real world. In step 3, PA-
Prob() before SimB
RW may (pathologic-
ally) differ from PA-
Prob() after RW.

Legend: RW = rewind; Prob() = probability of abort.

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Closer look: possible instantiation and simulation (high level)

9 Legend: Ped (Pedersen); ElgCom (ElGamal)

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Closer look: possible instantiation and simulation (high level)

9

PA PB

mB
(Equiv)

mA
(Ext)

mA
(Ext)

mB
(Equiv)

m = mA  mB

1.

3.

2.

4.

0. Setup

Legend: Ped (Pedersen); ElgCom (ElGamal)

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Closer look: possible instantiation and simulation (high level)

9

PA PB

mB
(Equiv)

mA
(Ext)

mA
(Ext)

mB
(Equiv)

m = mA  mB

1.

3.

2.

4.

0. Setup

PedCom(hash(mB))

mB
PedOpen(hash)

ElgOpen(seed)

Pub Params
ZKPoK(secret)

ElgEnc(seed)

PRG[seed]  mA

Legend: Ped (Pedersen); ElgCom (ElGamal)

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Closer look: possible instantiation and simulation (high level)

9

PA PB

mB
(Equiv)

mA
(Ext)

mA
(Ext)

mB
(Equiv)

m = mA  mB

1.

3.

2.

4.

0. Setup
Case malicious PA

SimB

PedCom(hash(mB))

mB
PedOpen(hash)

ElgOpen(seed)

Pub Params
ZKPoK(secret)

ElgEnc(seed)

PRG[seed]  mA

Legend: Ped (Pedersen); ElgCom (ElGamal)

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Closer look: possible instantiation and simulation (high level)

9

PA PB

mB
(Equiv)

mA
(Ext)

mA
(Ext)

mB
(Equiv)

m = mA  mB

1.

3.

2.

4.

0. Setup
Case malicious PA

● In step 0: SimB extract trapdoor
● In step 2: SimB extracts mA ,
● In step 3: SimB Equiv-opens mB = m  mA

SimB

PedCom(hash(mB))

mB
PedOpen(hash)

ElgOpen(seed)

Pub Params
ZKPoK(secret)

ElgEnc(seed)

PRG[seed]  mA

Legend: Ped (Pedersen); ElgCom (ElGamal)

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Closer look: possible instantiation and simulation (high level)

9

PA PB

mB
(Equiv)

mA
(Ext)

mA
(Ext)

mB
(Equiv)

m = mA  mB

1.

3.

2.

4.

0. Setup
Case malicious PA

● In step 0: SimB extract trapdoor
● In step 2: SimB extracts mA ,
● In step 3: SimB Equiv-opens mB = m  mA

Case malicious PB

SimA

PedCom(hash(mB))

mB
PedOpen(hash)

ElgOpen(seed)

Pub Params
ZKPoK(secret)

ElgEnc(seed)

PRG[seed]  mA

Legend: Ped (Pedersen); ElgCom (ElGamal)

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Closer look: possible instantiation and simulation (high level)

9

PA PB

mB
(Equiv)

mA
(Ext)

mA
(Ext)

mB
(Equiv)

m = mA  mB

1.

3.

2.

4.

0. Setup
Case malicious PA

● In step 0: SimB extract trapdoor
● In step 2: SimB extracts mA ,
● In step 3: SimB Equiv-opens mB = m  mA

Case malicious PB

SimA

PedCom(hash(mB))

mB
PedOpen(hash)

ElgOpen(seed)

Pub Params
ZKPoK(secret)

ElgEnc(seed)

PRG[seed]  mA

Optimistic simulation:
● In step 2: SimA commits random mA
● In step 3: PB opens mB, then SimA rewinds
● In step 2: SimA commits mA = m  mB
● In step 3: PB opens mB

Legend: Ped (Pedersen); ElgCom (ElGamal)

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Closer look: possible instantiation and simulation (high level)

9

PA PB

mB
(Equiv)

mA
(Ext)

mA
(Ext)

mB
(Equiv)

m = mA  mB

1.

3.

2.

4.

0. Setup
Case malicious PA

● In step 0: SimB extract trapdoor
● In step 2: SimB extracts mA ,
● In step 3: SimB Equiv-opens mB = m  mA

Case malicious PB

SimA

PedCom(hash(mB))

mB
PedOpen(hash)

ElgOpen(seed)

Pub Params
ZKPoK(secret)

ElgEnc(seed)

PRG[seed]  mA

If PB aborts () first time in step 3:
● SimA emulates abort in ideal world.

Optimistic simulation:
● In step 2: SimA commits random mA
● In step 3: PB opens mB, then SimA rewinds
● In step 2: SimA commits mA = m  mB
● In step 3: PB opens mB

Legend: Ped (Pedersen); ElgCom (ElGamal)

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Closer look: possible instantiation and simulation (high level)

9

PA PB

mB
(Equiv)

mA
(Ext)

mA
(Ext)

mB
(Equiv)

m = mA  mB

1.

3.

2.

4.

0. Setup
Case malicious PA

● In step 0: SimB extract trapdoor
● In step 2: SimB extracts mA ,
● In step 3: SimB Equiv-opens mB = m  mA

Case malicious PB

SimA

PedCom(hash(mB))

mB
PedOpen(hash)

ElgOpen(seed)

Pub Params
ZKPoK(secret)

ElgEnc(seed)

PRG[seed]  mA

If PB aborts () first time in step 3:
● SimA emulates abort in ideal world.

If PB NOT- 1st time, but  2nd time:
● SimA estimates Prob() ([GK96])
● SimA tries till PB opens or #RWs  p(k)/Prob()

Optimistic simulation:
● In step 2: SimA commits random mA
● In step 3: PB opens mB, then SimA rewinds
● In step 2: SimA commits mA = m  mB
● In step 3: PB opens mB

Legend: Ped (Pedersen); ElgCom (ElGamal)

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Closer look: possible instantiation and simulation (high level)

9

PA PB

mB
(Equiv)

mA
(Ext)

mA
(Ext)

mB
(Equiv)

m = mA  mB

1.

3.

2.

4.

0. Setup
Case malicious PA

● In step 0: SimB extract trapdoor
● In step 2: SimB extracts mA ,
● In step 3: SimB Equiv-opens mB = m  mA

Case malicious PB

SimA

PedCom(hash(mB))

mB
PedOpen(hash)

ElgOpen(seed)

Pub Params
ZKPoK(secret)

ElgEnc(seed)

PRG[seed]  mA

If PB aborts () first time in step 3:
● SimA emulates abort in ideal world.

If PB NOT- 1st time, but  2nd time:
● SimA estimates Prob() ([GK96])
● SimA tries till PB opens or #RWs  p(k)/Prob()

Optimistic simulation:
● In step 2: SimA commits random mA
● In step 3: PB opens mB, then SimA rewinds
● In step 2: SimA commits mA = m  mB
● In step 3: PB opens mB

Legend: Ped (Pedersen); ElgCom (ElGamal)

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Closer look: possible instantiation and simulation (high level)

9

PA PB

mB
(Equiv)

mA
(Ext)

mA
(Ext)

mB
(Equiv)

m = mA  mB

1.

3.

2.

4.

0. Setup
Case malicious PA

● In step 0: SimB extract trapdoor
● In step 2: SimB extracts mA ,
● In step 3: SimB Equiv-opens mB = m  mA

Case malicious PB

SimBSimA

PedCom(hash(mB))

mB
PedOpen(hash)

ElgOpen(seed)

Pub Params
ZKPoK(secret)

ElgEnc(seed)

PRG[seed]  mA

If PB aborts () first time in step 3:
● SimA emulates abort in ideal world.

If PB NOT- 1st time, but  2nd time:
● SimA estimates Prob() ([GK96])
● SimA tries till PB opens or #RWs  p(k)/Prob()

Optimistic simulation:
● In step 2: SimA commits random mA
● In step 3: PB opens mB, then SimA rewinds
● In step 2: SimA commits mA = m  mB
● In step 3: PB opens mB

Legend: p(k) (suitable polynomial of the sec. parameter)
Legend: Ped (Pedersen); ElgCom (ElGamal)

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Complexity

10

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Complexity

Fixed offset:
● Setup (optional, e.g., to give trapdoor to simulator)

● Ext-Com scheme: 1 Com/Open of short seed

● Equiv-Com scheme: 1 Com/Open of short hash

10

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Complexity

Fixed offset:
● Setup (optional, e.g., to give trapdoor to simulator)

● Ext-Com scheme: 1 Com/Open of short seed

● Equiv-Com scheme: 1 Com/Open of short hash

10

(may be based on ZK or cut-and-choose, but only related to 1 or 2 short strings)

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Complexity

Fixed offset:
● Setup (optional, e.g., to give trapdoor to simulator)

● Ext-Com scheme: 1 Com/Open of short seed

● Equiv-Com scheme: 1 Com/Open of short hash

10

(may be based on ZK or cut-and-choose, but only related to 1 or 2 short strings)

Amortized for long strings:
● Communication: 2 bits per flipped coin

● Computation (per party): 1 PRG, 1 CR-Hash, 1 XOR

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Roadmap

1. Simulatable coin-flipping and commitments

2. Protocol #1: coin-flipping (simulatable with rewinding)

3. Protocol #2: UC Commitment Scheme

4. Open questions / research directions

11

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Toward an efficient UC-Com scheme

12

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Toward an efficient UC-Com scheme

12

How to get an Ext&Equiv-Com for LONG strings, with:
● Communication expansion-rate 1+ε

● A FEW Ext-coms for SHORT strings

● A FEW Equiv-coms for SHORT strings

● Symmetric crypto operations (PRG, CR-Hash)

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Toward an efficient UC-Com scheme

12

How to get an Ext&Equiv-Com for LONG strings, with:
● Communication expansion-rate 1+ε

● A FEW Ext-coms for SHORT strings

● A FEW Equiv-coms for SHORT strings

● Symmetric crypto operations (PRG, CR-Hash)

Ideal Ext-Com

Ideal Equiv-Com

UC-Coms do not

exist in plain model

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Toward an efficient UC-Com scheme

12

How to get an Ext&Equiv-Com for LONG strings, with:
● Communication expansion-rate 1+ε

● A FEW Ext-coms for SHORT strings

● A FEW Equiv-coms for SHORT strings

● Symmetric crypto operations (PRG, CR-Hash)

Ideal Ext-Com

Ideal Equiv-Com

UC-Coms do not

exist in plain model
(Other recent Rate-1 UC-Com schemes mentioned
ahead: [GIKW14, DDGN14, CDD+15, FJNT16])

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Toward an efficient UC-Com scheme

12

How to get an Ext&Equiv-Com for LONG strings, with:
● Communication expansion-rate 1+ε

● A FEW Ext-coms for SHORT strings

● A FEW Equiv-coms for SHORT strings

● Symmetric crypto operations (PRG, CR-Hash)

Progress in two steps:

 1. A comm. inefficient scheme, based on cut-and-choose

 2. Improve comm. efficiency, with authenticators and an erasure-code

Ideal Ext-Com

Ideal Equiv-Com

UC-Coms do not

exist in plain model
(Other recent Rate-1 UC-Com schemes mentioned
ahead: [GIKW14, DDGN14, CDD+15, FJNT16])

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Toward an efficient UC-Com scheme

12

How to get an Ext&Equiv-Com for LONG strings, with:
● Communication expansion-rate 1+ε

● A FEW Ext-coms for SHORT strings

● A FEW Equiv-coms for SHORT strings

● Symmetric crypto operations (PRG, CR-Hash)

Progress in two steps:

 1. A comm. inefficient scheme, based on cut-and-choose

 2. Improve comm. efficiency, with authenticators and an erasure-code

j j

Pictorial
notation:

j j j

seed

Ext-Com
of seed

PRG-expansion
of seed (mask) hash

Equiv-Com
of hash

Ideal Ext-Com

Ideal Equiv-Com

UC-Coms do not

exist in plain model
(Other recent Rate-1 UC-Com schemes mentioned
ahead: [GIKW14, DDGN14, CDD+15, FJNT16])

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Cut-and-choose warmup

13

(Warning:
heavy slide)

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Cut-and-choose warmup

13

1. Commit phase

(Warning:
heavy slide)

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Cut-and-choose warmup

13

1. Commit phase

j j

j j

Ext-Com

PRG

CR-Hash
j Equiv-Com

(Commit seeds and hashes) For j  {1,…, n}:
S→RS

seed

mask
hash

Legend:
S = Sender; R = Receiver
n = # instances;
j = index of instance

(Warning:
heavy slide)

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Cut-and-choose warmup

13

1. Commit phase

j j

j j

Ext-Com

PRG

CR-Hash
j Equiv-Com

(Commit seeds and hashes) For j  {1,…, n}:
S→RS

seed

mask
hash

Legend:
S = Sender; R = Receiver
n = # instances;
j = index of instance

If S*, hash may differ from hash of PRG of seed

(Warning:
heavy slide)

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Cut-and-choose warmup

13

1. Commit phase

j j

j j

Ext-Com

PRG

CR-Hash
j Equiv-Com

(Commit seeds and hashes) For j  {1,…, n}:
S→RS

seed

mask
hash

Legend:
S = Sender; R = Receiver
n = # instances;
j = index of instance

{CHECK, EVAL} $ Partitions[{1,…, n}]

(Cut-and-Choose challenges) R → S:

If S*, hash may differ from hash of PRG of seed

(Warning:
heavy slide)

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Cut-and-choose warmup

13

1. Commit phase

j j

j j

Ext-Com

PRG

CR-Hash
j Equiv-Com

(Commit seeds and hashes) For j  {1,…, n}:
S→RS

seed

mask
hash

Open()j

S→R

jOpen()

For j  CHECK:

Legend:
S = Sender; R = Receiver
n = # instances;
j = index of instance

{CHECK, EVAL} $ Partitions[{1,…, n}]

(Cut-and-Choose challenges) R → S:

If S*, hash may differ from hash of PRG of seed

(Warning:
heavy slide)

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Cut-and-choose warmup

13

1. Commit phase

j j

j j

Ext-Com

PRG

CR-Hash
j Equiv-Com

(Commit seeds and hashes) For j  {1,…, n}:
S→RS

seed

mask
hash

Open()j

S→R

jOpen()

For j  CHECK:
R

jCR-Hash() =? j

j =PRG[]j

Legend:
S = Sender; R = Receiver
n = # instances;
j = index of instance

{CHECK, EVAL} $ Partitions[{1,…, n}]

(Cut-and-Choose challenges) R → S:

If S*, hash may differ from hash of PRG of seed

(Warning:
heavy slide)

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Cut-and-choose warmup

13

1. Commit phase

j j

j j

Ext-Com

PRG

CR-Hash
j Equiv-Com

(Commit seeds and hashes) For j  {1,…, n}:
S→RS

seed

mask
hash

Open()j

S→R

jOpen()

For j  CHECK:
R

jCR-Hash() =? j

j =PRG[]j

Legend:
S = Sender; R = Receiver
n = # instances;
j = index of instance

{CHECK, EVAL} $ Partitions[{1,…, n}]

(Cut-and-Choose challenges) R → S:

(R believes majority EVAL instances are OK)

If S*, hash may differ from hash of PRG of seed

(Warning:
heavy slide)

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Cut-and-choose warmup

13

1. Commit phase

j j

j j

Ext-Com

PRG

CR-Hash
j Equiv-Com

(Commit seeds and hashes) For j  {1,…, n}:
S→RS

seed

mask
hash

msg masking

j

For j  EVAL:

 j

S→RS S

=
mask

Open()j

S→R

jOpen()

For j  CHECK:
R

jCR-Hash() =? j

j =PRG[]j

Legend:
S = Sender; R = Receiver
n = # instances;
j = index of instance

{CHECK, EVAL} $ Partitions[{1,…, n}]

(Cut-and-Choose challenges) R → S:

(R believes majority EVAL instances are OK)

If S*, hash may differ from hash of PRG of seed

(Warning:
heavy slide)

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Cut-and-choose warmup

13

1. Commit phase

j j

j j

Ext-Com

PRG

CR-Hash
j Equiv-Com

(Commit seeds and hashes) For j  {1,…, n}:
S→RS

seed

mask
hash

msg masking

j

For j  EVAL:

 j

S→RS S

=
mask

Open()j

S→R

jOpen()

For j  CHECK:
R

jCR-Hash() =? j

j =PRG[]j

Legend:
S = Sender; R = Receiver
n = # instances;
j = index of instance

{CHECK, EVAL} $ Partitions[{1,…, n}]

(Cut-and-Choose challenges) R → S:

(R believes majority EVAL instances are OK)

If S*, hash may differ from hash of PRG of seed Extraction (SimR):

=Ext()jj

j =PRG[]j

j jj=

(Warning:
heavy slide)

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Cut-and-choose warmup

13

1. Commit phase

2. Open phase

j j

j j

Ext-Com

PRG

CR-Hash
j Equiv-Com

(Commit seeds and hashes) For j  {1,…, n}:
S→RS

seed

mask
hash

msg masking

j

For j  EVAL:

 j

S→RS S

=
mask

Open()j

S→R

jOpen()

For j  CHECK:
R

jCR-Hash() =? j

j =PRG[]j

Legend:
S = Sender; R = Receiver
n = # instances;
j = index of instance

{CHECK, EVAL} $ Partitions[{1,…, n}]

(Cut-and-Choose challenges) R → S:

(R believes majority EVAL instances are OK)

If S*, hash may differ from hash of PRG of seed Extraction (SimR):

=Ext()jj

j =PRG[]j

j jj=

(Warning:
heavy slide)

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Cut-and-choose warmup

13

1. Commit phase

2. Open phase

j j

j j

Ext-Com

PRG

CR-Hash
j Equiv-Com

(Commit seeds and hashes) For j  {1,…, n}:
S→RS

seed

mask
hash

msg masking

j

For j  EVAL:

 j

S→RS S

=
mask

Open()j

S→R

jOpen()

For j  CHECK:
R

jCR-Hash() =? j

j =PRG[]j

Legend:
S = Sender; R = Receiver
n = # instances;
j = index of instance

{CHECK, EVAL} $ Partitions[{1,…, n}]

(Cut-and-Choose challenges) R → S:

Reveal

S→R:

jOpen() : j  Eval

(R believes majority EVAL instances are OK)

If S*, hash may differ from hash of PRG of seed Extraction (SimR):

=Ext()jj

j =PRG[]j

j jj=

(Warning:
heavy slide)

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Cut-and-choose warmup

13

1. Commit phase

2. Open phase

j j

j j

Ext-Com

PRG

CR-Hash
j Equiv-Com

(Commit seeds and hashes) For j  {1,…, n}:
S→RS

seed

mask
hash

msg masking

j

For j  EVAL:

 j

S→RS S

=
mask

Open()j

S→R

jOpen()

For j  CHECK:
R

jCR-Hash() =? j

j =PRG[]j

Legend:
S = Sender; R = Receiver
n = # instances;
j = index of instance

{CHECK, EVAL} $ Partitions[{1,…, n}]

(Cut-and-Choose challenges) R → S:

Reveal

S→R:

jOpen() : j  Eval j j=
jCR-Hash() =?

R:

jR:

(R believes majority EVAL instances are OK)

If S*, hash may differ from hash of PRG of seed Extraction (SimR):

=Ext()jj

j =PRG[]j

j jj=

(Warning:
heavy slide)

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Cut-and-choose warmup

13

1. Commit phase

2. Open phase

j j

j j

Ext-Com

PRG

CR-Hash
j Equiv-Com

(Commit seeds and hashes) For j  {1,…, n}:
S→RS

seed

mask
hash

msg masking

j

For j  EVAL:

 j

S→RS S

=
mask

Open()j

S→R

jOpen()

For j  CHECK:
R

jCR-Hash() =? j

j =PRG[]j

Legend:
S = Sender; R = Receiver
n = # instances;
j = index of instance

{CHECK, EVAL} $ Partitions[{1,…, n}]

(Cut-and-Choose challenges) R → S:

Reveal

S→R:

jOpen() : j  Eval j j=
jCR-Hash() =?

R:

jR:

(R believes majority EVAL instances are OK)

If S*, hash may differ from hash of PRG of seed Extraction (SimR):

=Ext()jj

j =PRG[]j

j jj=
Equivocation by SimS:

jj =

Equiv-Open()j

j=CR-Hash()j

(Warning:
heavy slide)

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Improving communication

14

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Improving communication

14

Problems with the warmup protocol

- Ensure correct extraction of message m implies many instances

- E.g. 40 bits statistical security  n ≥ 123, e.g. (n, v, e) = (123, 74, 49).

- High communication complexity: |m| × e

Legend:
m = message; n = # instances;
e = #(EVAL); v = #(CHECK)

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Improving communication

14

Add two ingredients:

Problems with the warmup protocol

- Ensure correct extraction of message m implies many instances

- E.g. 40 bits statistical security  n ≥ 123, e.g. (n, v, e) = (123, 74, 49).

- High communication complexity: |m| × e

Legend:
m = message; n = # instances;
e = #(EVAL); v = #(CHECK)

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Improving communication

● Authenticators: “authenticate” the message before masking it

14

Add two ingredients:

Problems with the warmup protocol

- Ensure correct extraction of message m implies many instances

- E.g. 40 bits statistical security  n ≥ 123, e.g. (n, v, e) = (123, 74, 49).

- High communication complexity: |m| × e

Legend:
m = message; n = # instances;
e = #(EVAL); v = #(CHECK)

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Improving communication

● Authenticators: “authenticate” the message before masking it

 SimR can verify each tentative extracted m for correctness

 1 good Eval instance is enough  better params (n, v, e) = (41, ≥21, ≤20)

14

Add two ingredients:

Problems with the warmup protocol

- Ensure correct extraction of message m implies many instances

- E.g. 40 bits statistical security  n ≥ 123, e.g. (n, v, e) = (123, 74, 49).

- High communication complexity: |m| × e

Legend:
m = message; n = # instances;
e = #(EVAL); v = #(CHECK)

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Improving communication

● Authenticators: “authenticate” the message before masking it

 SimR can verify each tentative extracted m for correctness

 1 good Eval instance is enough  better params (n, v, e) = (41, ≥21, ≤20)

14

● Erasure-code: split message into smaller fragments (aka shares)

Add two ingredients:

Problems with the warmup protocol

- Ensure correct extraction of message m implies many instances

- E.g. 40 bits statistical security  n ≥ 123, e.g. (n, v, e) = (123, 74, 49).

- High communication complexity: |m| × e

Legend:
m = message; n = # instances;
e = #(EVAL); v = #(CHECK)

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Improving communication

● Authenticators: “authenticate” the message before masking it

 SimR can verify each tentative extracted m for correctness

 1 good Eval instance is enough  better params (n, v, e) = (41, ≥21, ≤20)

14

● Erasure-code: split message into smaller fragments (aka shares)

 Mask each (“authenticated”) share, instead of full message m

 SimR extracts m if it extracts enough (t) correct shares out of e shares

 New params, e.g., (n, v, e, t) = (119, 73, 46, 23)  Comm = |m| × e / t

Add two ingredients:

Problems with the warmup protocol

- Ensure correct extraction of message m implies many instances

- E.g. 40 bits statistical security  n ≥ 123, e.g. (n, v, e) = (123, 74, 49).

- High communication complexity: |m| × e

Legend:
m = message; n = # instances;
e = #(EVAL); v = #(CHECK)

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Complexity

15

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Complexity

15

E.g. C&C and erasure code parameters:
● n = 119 (# instances in cut-and-choose)
● v = 73 (# committed seeds and hashes)
● e = 46 (# shares = # Eval instances)
● t = 23 (# good shares needed by Simulator)

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Complexity

15

E.g. C&C and erasure code parameters:
● n = 119 (# instances in cut-and-choose)
● v = 73 (# committed seeds and hashes)
● e = 46 (# shares = # Eval instances)
● t = 23 (# good shares needed by Simulator)

Comm. and comp. rates:
● r = e / t = 2 (comm. expansion-rate in

commit phase, with rate-1 erasure code)

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Complexity

15

E.g. C&C and erasure code parameters:
● n = 119 (# instances in cut-and-choose)
● v = 73 (# committed seeds and hashes)
● e = 46 (# shares = # Eval instances)
● t = 23 (# good shares needed by Simulator)

Comm. and comp. rates:
● r = e / t = 2 (comm. expansion-rate in

commit phase, with rate-1 erasure code)
● r’ = n / t = 5.17 (length of overall PRG

output divided by message length)
(same in respect to CR-Hash input)

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Complexity

15

E.g. C&C and erasure code parameters:
● n = 119 (# instances in cut-and-choose)
● v = 73 (# committed seeds and hashes)
● e = 46 (# shares = # Eval instances)
● t = 23 (# good shares needed by Simulator)

Some notes:

Comm. and comp. rates:
● r = e / t = 2 (comm. expansion-rate in

commit phase, with rate-1 erasure code)
● r’ = n / t = 5.17 (length of overall PRG

output divided by message length)
(same in respect to CR-Hash input)

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Complexity

15

E.g. C&C and erasure code parameters:
● n = 119 (# instances in cut-and-choose)
● v = 73 (# committed seeds and hashes)
● e = 46 (# shares = # Eval instances)
● t = 23 (# good shares needed by Simulator)

Some notes:

● Can decrease rates r and r’ closer to 1 (at the cost of larger erasure-code parameters)

Comm. and comp. rates:
● r = e / t = 2 (comm. expansion-rate in

commit phase, with rate-1 erasure code)
● r’ = n / t = 5.17 (length of overall PRG

output divided by message length)
(same in respect to CR-Hash input)

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Complexity

15

E.g. C&C and erasure code parameters:
● n = 119 (# instances in cut-and-choose)
● v = 73 (# committed seeds and hashes)
● e = 46 (# shares = # Eval instances)
● t = 23 (# good shares needed by Simulator)

Some notes:

● Can decrease rates r and r’ closer to 1 (at the cost of larger erasure-code parameters)

● Sender and Receiver only need to encode; only simulator needs to decode

Comm. and comp. rates:
● r = e / t = 2 (comm. expansion-rate in

commit phase, with rate-1 erasure code)
● r’ = n / t = 5.17 (length of overall PRG

output divided by message length)
(same in respect to CR-Hash input)

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Complexity

15

E.g. C&C and erasure code parameters:
● n = 119 (# instances in cut-and-choose)
● v = 73 (# committed seeds and hashes)
● e = 46 (# shares = # Eval instances)
● t = 23 (# good shares needed by Simulator)

Some notes:

● Can decrease rates r and r’ closer to 1 (at the cost of larger erasure-code parameters)

● Sender and Receiver only need to encode; only simulator needs to decode

● # hashes (and # Equiv-Coms) can be reduced to 1, if allowing delayed verification
(SimR can still extract, or detect non-ability of Sender to open)

Comm. and comp. rates:
● r = e / t = 2 (comm. expansion-rate in

commit phase, with rate-1 erasure code)
● r’ = n / t = 5.17 (length of overall PRG

output divided by message length)
(same in respect to CR-Hash input)

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Complexity

15

E.g. C&C and erasure code parameters:
● n = 119 (# instances in cut-and-choose)
● v = 73 (# committed seeds and hashes)
● e = 46 (# shares = # Eval instances)
● t = 23 (# good shares needed by Simulator)

Some notes:

● Can decrease rates r and r’ closer to 1 (at the cost of larger erasure-code parameters)

● Sender and Receiver only need to encode; only simulator needs to decode

● # hashes (and # Equiv-Coms) can be reduced to 1, if allowing delayed verification
(SimR can still extract, or detect non-ability of Sender to open)

● Ideal Equiv-Com and ideal Ext-Com can be instantiated in other setups, e.g. CRS

Comm. and comp. rates:
● r = e / t = 2 (comm. expansion-rate in

commit phase, with rate-1 erasure code)
● r’ = n / t = 5.17 (length of overall PRG

output divided by message length)
(same in respect to CR-Hash input)

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Complexity

15

E.g. C&C and erasure code parameters:
● n = 119 (# instances in cut-and-choose)
● v = 73 (# committed seeds and hashes)
● e = 46 (# shares = # Eval instances)
● t = 23 (# good shares needed by Simulator)

Some notes:

● Can decrease rates r and r’ closer to 1 (at the cost of larger erasure-code parameters)

● Sender and Receiver only need to encode; only simulator needs to decode

● # hashes (and # Equiv-Coms) can be reduced to 1, if allowing delayed verification
(SimR can still extract, or detect non-ability of Sender to open)

● Ideal Equiv-Com and ideal Ext-Com can be instantiated in other setups, e.g. CRS

● Interaction due to cut-&-choose can be removed by using Non-Programmable
Random Oracle (and increasing statistical security parameter)

Comm. and comp. rates:
● r = e / t = 2 (comm. expansion-rate in

commit phase, with rate-1 erasure code)
● r’ = n / t = 5.17 (length of overall PRG

output divided by message length)
(same in respect to CR-Hash input)

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Some related work

16

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Some related work

16

Some UC-Com Schemes in 2011, 2013: [Lin11, FLM11, BCPV13]

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Some related work

16

Some UC-Com Schemes in 2011, 2013: [Lin11, FLM11, BCPV13]

- Comm: several group elements exchanged per committed short-string.

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Some related work

16

Some UC-Com Schemes in 2011, 2013: [Lin11, FLM11, BCPV13]

- Comm: several group elements exchanged per committed short-string.

- Comp: several exponentiations per committed short string.

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Some related work

16

Some UC-Com Schemes in 2011, 2013: [Lin11, FLM11, BCPV13]

- Comm: several group elements exchanged per committed short-string.

- Comp: several exponentiations per committed short string.

- Some constructions achieve adaptive security.

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Some related work

16

2014 onward – rate-1+ UC-Com schemes (static security)

Some UC-Com Schemes in 2011, 2013: [Lin11, FLM11, BCPV13]

- Comm: several group elements exchanged per committed short-string.

- Comp: several exponentiations per committed short string.

- Some constructions achieve adaptive security.

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Some related work

16

2014 onward – rate-1+ UC-Com schemes (static security)

● [GIKW14]:

- First proposal; uses δ-OT instead of C&C.

- Requires Error-correction code (ECC, for semantic errors), instead of erasure code.

Some UC-Com Schemes in 2011, 2013: [Lin11, FLM11, BCPV13]

- Comm: several group elements exchanged per committed short-string.

- Comp: several exponentiations per committed short string.

- Some constructions achieve adaptive security.

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Some related work

16

2014 onward – rate-1+ UC-Com schemes (static security)

● [GIKW14]:

- First proposal; uses δ-OT instead of C&C.

- Requires Error-correction code (ECC, for semantic errors), instead of erasure code.

● [DDGN14,CDD+15]

- Also OT and ECC based

- Enable Homomorphic commitments.

Some UC-Com Schemes in 2011, 2013: [Lin11, FLM11, BCPV13]

- Comm: several group elements exchanged per committed short-string.

- Comp: several exponentiations per committed short string.

- Some constructions achieve adaptive security.

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Some related work

16

2014 onward – rate-1+ UC-Com schemes (static security)

● [GIKW14]:

- First proposal; uses δ-OT instead of C&C.

- Requires Error-correction code (ECC, for semantic errors), instead of erasure code.

● [DDGN14,CDD+15]

- Also OT and ECC based

- Enable Homomorphic commitments.

● [FJNT16] (Also OT based):

- Uses consistency check to allow erasure code instead of ECC

- Enable homomorphic commitments.

Some UC-Com Schemes in 2011, 2013: [Lin11, FLM11, BCPV13]

- Comm: several group elements exchanged per committed short-string.

- Comp: several exponentiations per committed short string.

- Some constructions achieve adaptive security.

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Roadmap

1. Simulatable coin-flipping and commitments

2. Protocol #1: coin-flipping (simulatable with rewinding)

3. Protocol #2: UC Commitment Scheme

4. Open questions / research directions

17

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Possible research directions:

18

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Possible research directions:

● Formalize ideal Ext-but-not-Equiv and Equiv-but-not-Ext Com schemes
(initial attempt at full version of the paper)

18

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Possible research directions:

● Formalize ideal Ext-but-not-Equiv and Equiv-but-not-Ext Com schemes
(initial attempt at full version of the paper)

● Actual instantiations / efficiency measurement (erasure code, …) / tradeoffs
(communication vs. computation)

18

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Possible research directions:

● Formalize ideal Ext-but-not-Equiv and Equiv-but-not-Ext Com schemes
(initial attempt at full version of the paper)

● Actual instantiations / efficiency measurement (erasure code, …) / tradeoffs
(communication vs. computation)

● Efficient UC-Com schemes (rate-1, linear-time) in adaptive model?

18

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Possible research directions:

● Formalize ideal Ext-but-not-Equiv and Equiv-but-not-Ext Com schemes
(initial attempt at full version of the paper)

● Actual instantiations / efficiency measurement (erasure code, …) / tradeoffs
(communication vs. computation)

● Efficient UC-Com schemes (rate-1, linear-time) in adaptive model?

● Decrease erasure-code parameters needed for statistical security parameter?

18

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Possible research directions:

● Formalize ideal Ext-but-not-Equiv and Equiv-but-not-Ext Com schemes
(initial attempt at full version of the paper)

● Actual instantiations / efficiency measurement (erasure code, …) / tradeoffs
(communication vs. computation)

● Efficient UC-Com schemes (rate-1, linear-time) in adaptive model?

● Decrease erasure-code parameters needed for statistical security parameter?

● Homomorphic properties?

18

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Possible research directions:

● Formalize ideal Ext-but-not-Equiv and Equiv-but-not-Ext Com schemes
(initial attempt at full version of the paper)

● Actual instantiations / efficiency measurement (erasure code, …) / tradeoffs
(communication vs. computation)

● Efficient UC-Com schemes (rate-1, linear-time) in adaptive model?

● Decrease erasure-code parameters needed for statistical security parameter?

● Homomorphic properties?

● Selective opening of parts of message?

18

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Possible research directions:

● Formalize ideal Ext-but-not-Equiv and Equiv-but-not-Ext Com schemes
(initial attempt at full version of the paper)

● Actual instantiations / efficiency measurement (erasure code, …) / tradeoffs
(communication vs. computation)

● Efficient UC-Com schemes (rate-1, linear-time) in adaptive model?

● Decrease erasure-code parameters needed for statistical security parameter?

● Homomorphic properties?

● Selective opening of parts of message?

● More efficient UC Coin-Flipping (2 bits / flipped coin & comp. efficient)?

18

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

Thank you for your attention

?
Very Efficient Simulatable Flipping of Many Coins into-a-well

luis.papers@gmail.com

https://ia.cr/2015/640

19

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

References mentioned in this presentation

● [Blu83]: Blum: Coin flipping by telephone – a protocol for solving impossible problems. SIGACT News 15, 23–
27 (1983). Appeared also at CRYPTO 1981

● [Lin03]: Lindell. Parallel coin-tossing and constant-round secure two-party computation. Jr Cryptology, 16(3),
2003.

● [PW09]: Pass and Wee. Black-box constructions of two-party protocols from one-way functions. TCC 2009
● [Lin11]: Lindell. Highly-efficient universally-composable commitments based on the DDH assumption.

EUROCRYPT 2011
● [BCVP13]: Blazy and Chevalier and Pointcheval, and Vergnaud. Analysis and improvement of Lindell’s UC-

secure commitment schemes. ACNS 2013
● [FLM11]: Fischlin and Libert and Manulis. Non-interactive and re-usable universally composable string

commitments with adaptive security. ASIACRYPT 2011
● [GK96]: Goldreich and Kahan. How to construct constant-round zero-knowledge proof systems for NP. Jr

Cryptology, 9(3), 1996.
● [GIKW14] Garay and Ishai and Kumaresan and Wee. On the complexity of UC commitments. EUROCRYPT

2014
● [CDD+15]: Cascudo and Damgård and David and Giacomelli and Nielsen and Trifiletti. Additively homomorphic

UC commitments with optimal amortized overhead. PKC 2015
● [DDGN14]: Damgård and David and Giacomelli and Nielsen. Compact VSS and efficient homomorphic UC

commitments. ASIACRYPT 2014
● [FJNT16]: Frederiksen, Jakobsen, Nielsen, and Trifiletti. On the complexity of additively homomorphic UC

commitments. TCC 2016-A

20

(More references in paper)

© 2014-2016 Luís Brandão PKC 2016 (March 09)“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

References mentioned in this presentation

● [Blu83]: Blum: Coin flipping by telephone – a protocol for solving impossible problems. SIGACT News 15, 23–
27 (1983). Appeared also at CRYPTO 1981

● [Lin03]: Lindell. Parallel coin-tossing and constant-round secure two-party computation. Jr Cryptology, 16(3),
2003.

● [PW09]: Pass and Wee. Black-box constructions of two-party protocols from one-way functions. TCC 2009
● [Lin11]: Lindell. Highly-efficient universally-composable commitments based on the DDH assumption.

EUROCRYPT 2011
● [BCVP13]: Blazy and Chevalier and Pointcheval, and Vergnaud. Analysis and improvement of Lindell’s UC-

secure commitment schemes. ACNS 2013
● [FLM11]: Fischlin and Libert and Manulis. Non-interactive and re-usable universally composable string

commitments with adaptive security. ASIACRYPT 2011
● [GK96]: Goldreich and Kahan. How to construct constant-round zero-knowledge proof systems for NP. Jr

Cryptology, 9(3), 1996.
● [GIKW14] Garay and Ishai and Kumaresan and Wee. On the complexity of UC commitments. EUROCRYPT

2014
● [CDD+15]: Cascudo and Damgård and David and Giacomelli and Nielsen and Trifiletti. Additively homomorphic

UC commitments with optimal amortized overhead. PKC 2015
● [DDGN14]: Damgård and David and Giacomelli and Nielsen. Compact VSS and efficient homomorphic UC

commitments. ASIACRYPT 2014
● [FJNT16]: Frederiksen, Jakobsen, Nielsen, and Trifiletti. On the complexity of additively homomorphic UC

commitments. TCC 2016-A

20

(More references in paper)

The following images were obtained (or edited) from files in the public domain (downloaded at clker dot com):

