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Roadmap

1. Simulatable coin-flipping and commitments

2. Protocol #1: coin-flipping (simulatable with rewinding)

3. Protocol #2: UC Commitment Scheme
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Problems with the warmup protocol

- Ensure correct extraction of message m implies many instances
- E.g. 40 bits statistical security = n > 123, e.g. (n, v, e) = (123, 74, 49).

- High communication complexity: |m| x e
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Roadmap

1. Simulatable coin-flipping and commitments

2. Protocol #1: coin-flipping (simulatable with rewinding)

3. Protocol #2: UC Commitment Scheme

4. Open questions / research directions
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Thank you for your attention

Very Efficient Simulatable Flipping of Many Coins into-a-well
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