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ally) differ from PA-
Prob() after RW.
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Different constructions (high level)
[Blum81-83] This paper[Lin03], [PW09]
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Closer look: possible instantiation and simulation (high level)
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Complexity

Fixed offset:
● Setup (optional, e.g., to give trapdoor to simulator)

● Ext-Com scheme: 1 Com/Open of short seed

● Equiv-Com scheme: 1 Com/Open of short hash
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(may be based on ZK or cut-and-choose, but only related to 1 or 2 short strings)
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Complexity

Fixed offset:
● Setup (optional, e.g., to give trapdoor to simulator)

● Ext-Com scheme: 1 Com/Open of short seed

● Equiv-Com scheme: 1 Com/Open of short hash

10

(may be based on ZK or cut-and-choose, but only related to 1 or 2 short strings)

Amortized for long strings:
● Communication: 2 bits per flipped coin

● Computation (per party): 1 PRG, 1 CR-Hash, 1 XOR
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Roadmap

1. Simulatable coin-flipping and commitments

2. Protocol #1: coin-flipping (simulatable with rewinding)

3. Protocol #2: UC Commitment Scheme

4. Open questions / research directions

11
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Toward an efficient UC-Com scheme

12
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How to get an Ext&Equiv-Com for LONG strings, with:
● Communication expansion-rate 1+ε

● A FEW Ext-coms for SHORT strings

● A FEW Equiv-coms for SHORT strings

● Symmetric crypto operations (PRG, CR-Hash)
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Cut-and-choose warmup
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1. Commit phase
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Ext-Com

PRG

CR-Hash
j Equiv-Com

(Commit seeds and hashes)  For j  {1,…, n}:
S→RS

seed

mask
hash

Legend:
S = Sender; R = Receiver
n = # instances; 
j = index of instance
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(R believes majority EVAL instances are OK)

If S*, hash may differ from hash of PRG of seed Extraction (SimR):

=Ext(      )jj

j =PRG[      ]j
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jR:

(R believes majority EVAL instances are OK)
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=Ext(      )jj
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Problems with the warmup protocol

- Ensure correct extraction of message m implies many instances

- E.g. 40 bits statistical security  n ≥ 123, e.g.  (n, v, e) = (123, 74, 49).

- High communication complexity: |m| × e

Legend:
m = message; n = # instances; 
e = #(EVAL); v = #(CHECK)
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● Erasure-code: split message into smaller fragments (aka shares)

 Mask each (“authenticated”) share, instead of full message m
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● # hashes (and # Equiv-Coms) can be reduced to 1, if allowing delayed verification 
(SimR can still extract, or detect non-ability of Sender to open)

● Ideal Equiv-Com and ideal Ext-Com can be instantiated in other setups, e.g. CRS

● Interaction due to cut-&-choose can be removed by using Non-Programmable 
Random Oracle (and increasing statistical security parameter)

Comm. and comp. rates:
● r = e / t = 2 (comm. expansion-rate in 

commit phase, with rate-1 erasure code)
● r’ = n / t = 5.17 (length of overall PRG 
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● [GIKW14]:

- First proposal; uses δ-OT instead of C&C.

- Requires Error-correction code (ECC, for semantic errors), instead of erasure code.

● [DDGN14,CDD+15] 

- Also OT and ECC based 

- Enable Homomorphic commitments. 

● [FJNT16] (Also OT based): 

- Uses consistency check to allow erasure code instead of ECC

- Enable homomorphic commitments.
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Roadmap

1. Simulatable coin-flipping and commitments

2. Protocol #1: coin-flipping (simulatable with rewinding)

3. Protocol #2: UC Commitment Scheme

4. Open questions / research directions
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Thank you for your attention

?
Very Efficient Simulatable Flipping of Many Coins into-a-well

luis.papers@gmail.com

https://ia.cr/2015/640
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