Very-Efficient Simulatable Flipping of Many Coins into-a-Well (and a New Universally-Composable Commitment Scheme)

Luís Brandão ${ }^{1,2, *}$

${ }^{1}$ University of Lisbon (Portugal)
${ }^{2}$ Carnegie Mellon University (USA)

Presented at Public Key Cryptography
March 09, 2016 @ Taipei, Taiwan

Ciências ULisboa

Roadmap

1. Simulatable coin-flipping and commitments
2. Protocol \#1: coin-flipping (simulatable with rewinding)
3. Protocol \#2: UC Commitment Scheme
4. Open questions / research directions

Roadmap

1. Simulatable coin-flipping and commitments
2. Protocol \#1: coin-flipping (simulatable with rewinding)
3. Protocol \#2: UC Commitment Scheme
4. Open questions / research directions

An ideal coin-flipping

An ideal coin-flipping

An ideal coin-flipping

An ideal coin-flipping into-a-well

Example motivations

- Real world decisions (e.g., who gets the car? [Blum83])
- Enable probabilistic output of external two-party protocol
- Random string (e.g., CRS) for another simulatable protocol

An ideal coin-flipping into-a-well

Example motivations

- Real world decisions (e.g., who gets the car? [Blum83])
- Enable probabilistic output of external two-party protocol
- Random string (e.g., CRS) for another simulatable protocol

Research question: How to perform two-party coin-flipping, i.e., without TTP, efficiently for many coins in parallel, within the ideal/real simulation paradigm?

An ideal coin-flipping into-a-well

Example motivations

- Real world decisions (e.g., who gets the car? [Blum83])
- Enable probabilistic output of external two-party protocol
- Random string (e.g., CRS) for another simulatable protocol

An early two-party coin-flipping protocol [Blum81-83]

Part 1 Ideal CF

An early two-party coin-flipping protocol [Blum81-83]

1. Commit Alice's contribution

An early two-party coin-flipping protocol [Blum81-83]

4 2. Send Bob's contribution

An early two-party coin-flipping protocol [Blum81-83]

1. Commit Alice's contribution

$\left(m_{\mathrm{B}}\right)$
2. Send Bob's contribution $\operatorname{Open}\left(\begin{array}{c}\left(\mathrm{m}_{\mathrm{A}}\right) \\)\end{array}\right.$
$\xrightarrow{\text { 3. Open Alice's contribution }}$

An early two-party coin-flipping protocol [Blum81-83]

$\xrightarrow{\text { 1. Commit Alice's contribution }}$

$\left(m_{\mathrm{B}}\right)$
2. Send Bob's contribution $\operatorname{Open}\left(\begin{array}{c}\left(\mathrm{m}_{\mathrm{A}}\right) \\)\end{array}\right.$
$\xrightarrow{\text { 3. Open Alice's contribution }}$

An early two-party coin-flipping protocol [Blum81-83]

(Hiding,
Binding)

$\xrightarrow{\text { 1. Commit Alice's contribution }}$ $\left(m_{\mathrm{B}}\right)$
2. Send Bob's contribution

$\xrightarrow{\text { 3. Open Alice's contribution }}$
4. Locally combine (XOR) the two contributions

$$
\left(m=m_{\mathbf{A}} \oplus m_{\mathbf{B}}\right)
$$

Simulatability \Rightarrow In a simulation, the Simulator (Sim) can induce any desired outcome (the one decided by TTP in ideal world).

An early two-party coin-flipping protocol [Blum81-83]

$\xrightarrow{\text { 3. Open Alice's contribution }}$
4. Locally combine (XOR) the two contributions

$$
\left(m=m_{\mathbf{A}} \oplus m_{\mathbf{B}}\right)
$$

Simulatability \Rightarrow In a simulation, the Simulator (Sim) can induce any desired outcome (the one decided by TTP in ideal world).

An early two-party coin-flipping protocol [Blum81-83]

4. Locally combine (XOR) the two contributions

$$
\oplus \quad\left(m=m_{A} \oplus m_{B}\right)
$$

Simulatability \Rightarrow In a simulation, the Simulator (Sim) can induce any desired outcome (the one decided by TTP in ideal world).

An early two-party coin-flipping protocol [Blum81-83]

Blum used an Equiv-but-not-Ext Com scheme. (Yet, using rewinding, $\mathrm{Sim}_{\mathrm{B}}$ can nonlocal Ext m_{A}, but problem if P_{A} 's Prob-Abort is unknown.)

Example of an Ext-and-Equiv Com Scheme [Lin03]

Example of an Ext-and-Equiv Com Scheme [Lin03]

Commit phase:

Open phase:

Example of an Ext-and-Equiv Com Scheme [Lin03]

Open phase:

Example of an Ext-and-Equiv Com Scheme [Lin03]

Example of an Ext-and-Equiv Com Scheme [Lin03]

Another example: [PW09] achieve Ext\&Equiv via cut-and-choose methods.

Example of an Ext-and-Equiv Com Scheme [Lin03]

Another example: [PW09] achieve Ext\&Equiv via cut-and-choose methods.
Problem: expensive in computational and/or communication terms

Example of an Ext-and-Equiv Com Scheme [Lin03]

Another example: [PW09] achieve Ext\&Equiv via cut-and-choose methods.
Problem: expensive in computational and/or communication terms

Can we make it more efficient?

```
Legend:
ZKA = Zero-Knowledge Argument
ZKAoK = ZKA of knowledge
```


Example of an Ext-and-Equiv Com Scheme [Lin03]

Another example: [PW09] achieve Ext\&Equiv via cut-and-choose methods.
Problem: expensive in computational and/or communication terms

Can we make it more efficient?

Note: [Lin03] actually uses this construction in the scope of a more general coin-flipping into a well, where P_{A} only learns $f\left(m_{\mathrm{A}} \oplus m_{\mathrm{B}}\right)$.

Initial intuition (insufficient)

$\frac{\text { Part } 1}{\text { Ideal CF }}$
TradTemp
Ext-Equiv
Intuition
$\mathbf{6}$

Initial intuition (insufficient)

$\frac{\text { Part } 1}{\text { Ideal CF }}$
TradTemp
Ext-Equiv
Intuition
$\mathbf{6}$

Initial intuition (insufficient)

Initial intuition (insufficient)

(Akin to hash-then-sign)

Initial intuition (insufficient)

[^0]
Initial intuition (insufficient)

Part 1 Ideal CF TradTemp Ext-Equiv Intuition

Initial intuition (insufficient)

This presentation - how to efficiently combine Ext and Equiv (for many bits)?

Initial intuition (insufficient)

This presentation - how to efficiently combine Ext and Equiv (for many bits)?

- Prot \#1: Coin-flipping simulatable-with-rewinding

Initial intuition (insufficient)

This presentation - how to efficiently combine Ext and Equiv (for many bits)?

- Prot \#1: Coin-flipping simulatable-with-rewinding
- Prot \#2: UC-Com scheme (namely without rewinding)

Roadmap

1. Simulatable coin-flipping and commitments
2. Protocol \#1: coin-flipping (simulatable with rewinding)
3. Protocol \#2: UC Commitment Scheme
4. Open questions / research directions

Different constructions (high level)

Part 2
Compare
Analyze
Complex
$\mathbf{8}$

Different constructions (high level)

[Blum81-83]
[Lin03], [PW09]
This paper

$\underline{\text { Part } 2}$
Compare
Analyze
Complex
$\mathbf{8}$

Different constructions (high level)

[Blum81-83]
[Lin03], [PW09]
This paper

$$
\boldsymbol{m}=m_{A} \oplus m_{B}
$$

Different constructions (high level)

[Blum81-83]
[Lin03], [PW09]
This paper

$\boldsymbol{m}_{\boldsymbol{B}}$

$\boldsymbol{m}=\boldsymbol{m}_{A} \oplus \boldsymbol{m}_{B}$

Problem: Can't ensure $\approx \operatorname{Prob}(\perp)$ in ideal vs. real world. In step 3, $\mathrm{P}_{\mathrm{A}^{-}}$
$\operatorname{Prob}(\perp)$ before Sim_{B} RW may (pathologically) differ from $\mathrm{P}_{\mathrm{A}^{-}}$
$\operatorname{Prob}(\perp)$ after RW.
Legend: RW = rewind; $\operatorname{Prob}(\perp)=$ probability of abort.

Different constructions (high level)

[Blum81-83]	
$\text { 2. } \longleftarrow \boldsymbol{m}_{\boldsymbol{B}}$	
$\xrightarrow{m_{\mathrm{A}}} \begin{array}{\|c} \text { (Equiv) } \end{array}$	
$\boldsymbol{m}=\boldsymbol{m}_{A} \oplus m_{B}$	
Problem: Can't ensure	
$\approx \operatorname{Prob}(\perp)$ in ideal vs. real world. In step $3, \mathrm{P}_{\mathrm{A}^{-}}$	
$\operatorname{Prob}(\perp)$ before $\operatorname{Sim}_{\mathbf{B}}$	
RW may (pathologically) differ from $\mathrm{P}_{\mathrm{A}^{-}}$ $\operatorname{Prob}(\perp)$ after RW.	

[Lin03], [PW09]

$$
\text { 3. } \xrightarrow{\left\lvert\, \begin{array}{c}
m_{\mathrm{A}} \\
\text { (Ext\&Equiv) }
\end{array}\right.}
$$

This paper

Different constructions (high level)

Problem: Can't ensure $\approx \operatorname{Prob}(\perp)$ in ideal vs. real world. In step $3, \mathrm{P}_{\mathrm{A}^{-}}$ $\operatorname{Prob}(\perp)$ before Sim_{B} RW may (pathologically) differ from $\mathrm{P}_{\mathrm{A}^{-}}$ $\operatorname{Prob}(\perp)$ after RW.
[Lin03], [PW09]

$$
m=m_{A} \oplus m_{B}
$$

- Lin03: ZK-based
- PW09: Cut\&Choose based

Simulatable, but inefficient for large $|m|$.

This paper

Legend: RW = rewind; $\operatorname{Prob}(\perp)=$ probability of abort.

Different constructions (high level)

[Lin03], [PW09]

$$
\boldsymbol{m}=m_{A} \oplus m_{B}
$$

- Lin03: ZK-based
- PW09: Cut\&Choose based

Simulatable, but inefficient for large $|m|$.

Problem: Can't ensure $\approx \operatorname{Prob}(\perp)$ in ideal vs. real world. In step 3, $\mathrm{P}_{\mathrm{A}^{-}}$ $\operatorname{Prob}(\perp)$ before Sim_{B} RW may (pathologically) differ from $\mathrm{P}_{\mathrm{A}^{-}}$ $\operatorname{Prob}(\perp)$ after RW. Legend: RW = rewind; $\operatorname{Prob}(\perp)=$ probability of abort.

Different constructions (high level)

Problem: Can't ensure $\approx \operatorname{Prob}(\perp)$ in ideal vs. real world. In step 3, $\mathrm{P}_{\mathrm{A}^{-}}$ $\operatorname{Prob}(\perp)$ before $\operatorname{Sim}_{\mathbf{B}}$ RW may (pathologically) differ from $\mathrm{P}_{\mathrm{A}^{-}}$ $\operatorname{Prob}(\perp)$ after RW.
[Lin03], [PW09]

$$
\boldsymbol{m}=m_{A} \oplus m_{B}
$$

- Lin03: ZK-based
- PW09: Cut\&Choose based

Simulatable, but inefficient for large $|m|$.

Ext-Com and Equiv-Com are efficient

Different constructions (high level)

Problem: Can't ensure $\approx \operatorname{Prob}(\perp)$ in ideal vs. real world. In step $3, \mathrm{P}_{\mathrm{A}^{-}}$ $\operatorname{Prob}(\perp)$ before Sim_{B} RW may (pathologically) differ from $\mathrm{P}_{\mathrm{A}^{-}}$ $\operatorname{Prob}(\perp)$ after RW.
[Lin03], [PW09]

$$
m=m_{A} \oplus m_{B}
$$

- Lin03: ZK-based
- PW09: Cut\&Choose based

Simulatable, but inefficient for large $|m|$.

Ext-Com and Equiv-Com are efficient

Simulatability: In the difficult side, $\operatorname{Prob}(\perp)$ by $\mathrm{P}_{\mathbf{B}}$ (step 3) may depend on $\operatorname{Com}\left(m_{\mathbf{A}}\right)$, but not on clear $m_{\mathbf{A}}$. Can be simulated in Expected-Poly \# RWs.

Legend: RW = rewind; $\operatorname{Prob}(\perp)=$ probability of abort.

Closer look: possible instantiation and simulation (high level)

Closer look: possible instantiation and simulation (high level)

3. | $m_{\mathbf{B}}$ |
| :---: |
| (Equiv) |$|$

$$
\boldsymbol{m}=m_{A} \oplus m_{B}
$$

9 Legend: Ped (Pedersen); ElgCom (ElGamal)
© 2014-2016 Luís Brandão

Closer look: possible instantiation and simulation (high level)

3.	$\boldsymbol{m}_{\mathbf{B}}$
(Equiv)	\(\quad \begin{gathered}\boldsymbol{m}_{\mathbf{B}}

PedOpen(hash)\end{gathered}\)

$$
\boldsymbol{m}=m_{A} \oplus m_{B}
$$

Closer look: possible instantiation and simulation (high level)

$$
\boldsymbol{m}=m_{A} \oplus m_{B}
$$

Case malicious \mathbf{P}_{A}

Closer look: possible instantiation and simulation (high level)

$$
\boldsymbol{m}=m_{A} \oplus m_{B}
$$

Closer look: possible instantiation and simulation (high level)

$$
m=m_{A} \oplus m_{B}
$$

Case malicious \mathbf{P}_{A}

- In step 0: $\mathrm{Sim}_{\mathbf{B}}$ extract trapdoor
- In step 2: $\operatorname{Sim}_{\mathbf{B}}$ extracts $\boldsymbol{m}_{\mathrm{A}}$,
- In step 3: Sim $_{\mathbf{B}}$ Equiv-opens $\boldsymbol{m}_{\mathbf{B}}=m \oplus \boldsymbol{m}_{\mathbf{A}}$

Case malicious $\mathbf{P}_{\mathbf{B}}$

Closer look: possible instantiation and simulation (high level)

4. $\begin{aligned} & \left\lvert\, \begin{array}{c}\boldsymbol{m}_{\mathrm{A}} \\ (\mathbf{E x t})\end{array}\right. \\ & \text { ElgOpen(seed) }\end{aligned}$

$$
m=m_{A} \oplus m_{B}
$$

Case malicious $\mathbf{P}_{\mathbf{A}}$

- In step 0: $\mathrm{Sim}_{\mathbf{B}}$ extract trapdoor
- In step 2: $\operatorname{Sim}_{\mathbf{B}}$ extracts $\boldsymbol{m}_{\mathrm{A}}$,
- In step 3: $\operatorname{Sim}_{\mathbf{B}}$ Equiv-opens $\boldsymbol{m}_{\mathbf{B}}=m \oplus \boldsymbol{m}_{\mathbf{A}}$

Case malicious \mathbf{P}_{B}

Optimistic simulation:

- In step 2: $\mathrm{Sim}_{\mathbf{A}}$ commits random $m_{\mathbf{A}}$
- In step 3: $\mathrm{P}_{\mathbf{B}}$ opens $m_{\mathbf{B}}$, then $\operatorname{Sim}_{\mathbf{A}}$ rewinds
- In step 2: $\operatorname{Sim}_{\mathbf{A}}$ commits $m_{\mathbf{A}}=m \oplus m_{\mathbf{B}}$
- In step 3: $\mathrm{P}_{\mathbf{B}}$ opens $m_{\mathbf{B}}$

Part 2

Closer look: possible instantiation and simulation (high level)

Pub Params ZKPoK (secret)

Sim_{A}

4. $\begin{aligned} &$| $\boldsymbol{m}_{\mathrm{A}}$ |
| :---: |
| $(\mathbf{E x t})$ |

\& ElgOpen(seed)\end{aligned}

$$
m=m_{A} \oplus m_{B}
$$

Case malicious \mathbf{P}_{A}

- In step 0: $\operatorname{Sim}_{\mathbf{B}}$ extract trapdoor
- In step 2: $\operatorname{Sim}_{\mathbf{B}}$ extracts $\boldsymbol{m}_{\mathrm{A}}$,
- In step 3: $\operatorname{Sim}_{\mathbf{B}}$ Equiv-opens $\boldsymbol{m}_{\mathbf{B}}=m \oplus \boldsymbol{m}_{\mathbf{A}}$

Case malicious \mathbf{P}_{B}

Optimistic simulation:

- In step 2: $\operatorname{Sim}_{\mathbf{A}}$ commits random $m_{\mathbf{A}}$
- In step 3: $\mathrm{P}_{\mathbf{B}}$ opens $m_{\mathbf{B}}$, then $\operatorname{Sim}_{\mathbf{A}}$ rewinds
- In step 2: $\operatorname{Sim}_{\mathbf{A}}$ commits $m_{\mathbf{A}}=m \oplus m_{\mathbf{B}}$
- In step 3: $\mathrm{P}_{\mathbf{B}}$ opens $m_{\mathbf{B}}$

If $\mathbf{P}_{\underline{B}}$ aborts (\perp) first time in step 3:

- $\operatorname{Sim}_{\mathrm{A}}$ emulates abort in ideal world.

Part 2
Compare Analyze Complex

Closer look: possible instantiation and simulation (high level)

Case malicious \mathbf{P}_{A}

- In step 0: $\operatorname{Sim}_{\mathbf{B}}$ extract trapdoor
- In step 2: $\operatorname{Sim}_{\mathrm{B}}$ extracts $\boldsymbol{m}_{\mathrm{A}}$,
- In step 3: $\operatorname{Sim}_{\mathbf{B}}$ Equiv-opens $\boldsymbol{m}_{\mathbf{B}}=m \oplus \boldsymbol{m}_{\mathbf{A}}$

Case malicious \mathbf{P}_{B}

Optimistic simulation:

- In step 2: $\operatorname{Sim}_{\mathbf{A}}$ commits random $m_{\mathbf{A}}$
- In step 3: $\mathrm{P}_{\mathbf{B}}$ opens $m_{\mathbf{B}}$, then $\operatorname{Sim}_{\mathbf{A}}$ rewinds
- In step 2: $\operatorname{Sim}_{\mathbf{A}}$ commits $m_{\mathbf{A}}=m \oplus m_{\mathbf{B}}$
- In step 3: $\mathrm{P}_{\mathbf{B}}$ opens $m_{\mathbf{B}}$
If $\mathbf{P}_{\underline{B}}$ aborts (\perp) first time in step 3:
- $\operatorname{Sim}_{\mathrm{A}}$ emulates abort in ideal world.

$$
\boldsymbol{m}=m_{A} \oplus m_{B}
$$

If $\mathbf{P}_{\underline{B}}$ NOT- \perp 1st time, but \perp 2nd time:

- $\operatorname{Sim}_{\mathrm{A}}$ estimates $\operatorname{Prob}(\perp)([\mathrm{GK} 96])$
- $\operatorname{Sim}_{\mathbf{A}}$ tries till $\mathbf{P}_{\mathbf{B}}$ opens or $\# \mathrm{RWs} \approx p(k) / \operatorname{Prob}(\perp)$

Part 2
Compare Analyze Complex

Closer look: possible instantiation and simulation (high level)

Case malicious \mathbf{P}_{A}

- In step 0: $\operatorname{Sim}_{\mathbf{B}}$ extract trapdoor
- In step 2: $\operatorname{Sim}_{\mathrm{B}}$ extracts $\boldsymbol{m}_{\mathrm{A}}$,
- In step 3: $\operatorname{Sim}_{\mathbf{B}}$ Equiv-opens $\boldsymbol{m}_{\mathbf{B}}=m \oplus \boldsymbol{m}_{\mathbf{A}}$

Case malicious \mathbf{P}_{B}

Optimistic simulation:

- In step 2: $\operatorname{Sim}_{\mathbf{A}}$ commits random $m_{\mathbf{A}}$
- In step 3: $\mathrm{P}_{\mathbf{B}}$ opens $m_{\mathbf{B}}$, then $\operatorname{Sim}_{\mathbf{A}}$ rewinds
- In step 2: $\operatorname{Sim}_{\mathbf{A}}$ commits $m_{\mathbf{A}}=m \oplus m_{\mathbf{B}}$
- In step 3: $\mathrm{P}_{\mathbf{B}}$ opens $m_{\mathbf{B}}$
If $\mathbf{P}_{\underline{B}}$ aborts (\perp) first time in step 3:
- $\operatorname{Sim}_{\mathrm{A}}$ emulates abort in ideal world.

$$
\boldsymbol{m}=m_{A} \oplus m_{B}
$$

If $\mathbf{P}_{\underline{B}}$ NOT- \perp 1st time, but \perp 2nd time:

- $\operatorname{Sim}_{\mathrm{A}}$ estimates $\operatorname{Prob}(\perp)([\mathrm{GK} 96])$
- $\operatorname{Sim}_{\mathbf{A}}$ tries till $\mathbf{P}_{\mathbf{B}}$ opens or $\# \mathrm{RWs} \approx p(k) / \operatorname{Prob}(\perp)$

Part 2
Compare Analyze Complex

Closer look: possible instantiation and simulation (high level)

Part 2
Compare Analyze Complex

Complexity

Complexity

Fixed offset:

- Setup (optional, e.g., to give trapdoor to simulator)
- Ext-Com scheme: 1 Com/Open of short seed
- Equiv-Com scheme: 1 Com/Open of short hash

Complexity

Fixed offset:

- Setup (optional, e.g., to give trapdoor to simulator)
- Ext-Com scheme: 1 Com/Open of short seed
- Equiv-Com scheme: 1 Com/Open of short hash (may be based on ZK or cut-and-choose, but only related to 1 or 2 short strings)

Complexity

Fixed offset:

- Setup (optional, e.g., to give trapdoor to simulator)
- Ext-Com scheme: 1 Com/Open of short seed
- Equiv-Com scheme: 1 Com/Open of short hash (may be based on ZK or cut-and-choose, but only related to 1 or 2 short strings)

Amortized for long strings:

- Communication: 2 bits per flipped coin
- Computation (per party): 1 PRG, 1 CR-Hash, 1 XOR

Roadmap

1. Simulatable coin-flipping and commitments
2. Protocol \#1: coin-flipping (simulatable with rewinding)
3. Protocol \#2: UC Commitment Scheme
4. Open questions / research directions

Toward an efficient UC-Com scheme

$\underline{\text { Part 3 }}$
Outline
Warmup
Improve
Complex
Rel W
12

Toward an efficient UC-Com scheme

How to get an Ext\&Equiv-Com for LONG strings, with:

- Communication expansion-rate $1+\varepsilon$
- A FEW Ext-coms for SHORT strings
- A FEW Equiv-coms for SHORT strings
- Symmetric crypto operations (PRG, CR-Hash)

Toward an efficient UC-Com scheme

How to get an Ext\&Equiv-Com for LONG strings, with:

- Communication expansion-rate $1+\varepsilon$
- A FEW Ext-coms for SHORT strings \longrightarrow Ideal Ext-Com
- A FEW Equiv-coms for SHORT strings \longrightarrow Ideal Equiv-Com
- Symmetric crypto operations (PRG, CR-Hash)

Toward an efficient UC-Com scheme

How to get an Ext\&Equiv-Com for LONG strings, with:

- Communication expansion-rate $1+\varepsilon$
- A FEW Ext-coms for SHORT strings \longrightarrow Ideal Ext-Com
- A FEW Equiv-coms for SHORT strings \longrightarrow Ideal Equiv-Com
- Symmetric crypto operations (PRG, CR-Hash)
(Other recent Rate-1 UC-Com schemes mentioned ahead: [GIKW14, DDGN14, CDD+15, FJNT16])

Toward an efficient UC-Com scheme

How to get an Ext\&Equiv-Com for LONG strings, with:

- Communication expansion-rate $1+\varepsilon$
- A FEW Ext-coms for SHORT strings \longrightarrow Ideal Ext-Com
- A FEW Equiv-coms for SHORT strings \longrightarrow Ideal Equiv-Com
- Symmetric crypto operations (PRG, CR-Hash)
(Other recent Rate-1 UC-Com schemes mentioned ahead: [GIKW14, DDGN14, CDD+15, FJNT16])

UC-Coms do not exist in plain model

Toward an efficient UC-Com scheme

How to get an Ext\&Equiv-Com for LONG strings, with:

- Communication expansion-rate $1+\varepsilon$
- A FEW Ext-coms for SHORT strings \longrightarrow Ideal Ext-Com
- A FEW Equiv-coms for SHORT strings \longrightarrow Ideal Equiv-Com
- Symmetric crypto operations (PRG, CR-Hash)
(Other recent Rate-1 UC-Com schemes mentioned ahead: [GIKW14, DDGN14, CDD+15, FJNT16])

UC-Coms do not exist in plain model

Progress in two steps:

1. A comm. inefficient scheme, based on cut-and-choose
2. Improve comm. efficiency, with authenticators and an erasure-code

Pictorial notation:

PRG-expansion of seed (mask)

Equiv-Com of hash

Cut-and-choose warmup

(Warning: heavy slide)

Cut-and-choose warmup

(Warning: heavy slide)

1. Commit phase

$\underline{\text { Part } 3}$
Outline
Warmup
Improve
Complex
Rel W
13

Cut-and-choose warmup

1. Commit phase

Legend:

S = Sender; R = Receiver
$n=$ \# instances;
$j=$ index of instance

Cut-and-choose warmup

1. Commit phase

If S*, hash may differ from hash of PRG of seed

Legend:

S = Sender; R = Receiver
$n=$ \# instances;
$j=$ index of instance

Cut-and-choose warmup

1. Commit phase

If S*, hash may differ from hash of PRG of seed
(Cut-and-Choose challenges) $\mathrm{R} \rightarrow \mathrm{S}$:
$\{$ CHECK, EVAL $\} \nleftarrow^{\varsigma}$ Partitions $[\{1, \ldots, n\}]$

Cut-and-choose warmup

 1. Commit phase

If S^{*}, hash may differ from hash of PRG of seed
(Cut-and-Choose challenges) $\mathrm{R} \rightarrow \mathrm{S}$:
$\{$ CHECK, EVAL $\} \leftarrow{ }^{\$}$ Partitions $[\{1, \ldots, n\}]$

Part 3
Outline
Warmup
Improve
Complex Rel W

Cut-and-choose warmup

 1. Commit phase
Legend:

S = Sender; R = Receiver $n=$ \# instances; $j=$ index of instance

Cut-and-choose warmup

 1. Commit phase
Legend:

S = Sender; R = Receiver
$n=$ \# instances;
$j=$ index of instance

If S*, hash may differ from hash of PRG of seed
(Cut-and-Choose challenges) $\mathrm{R} \rightarrow \mathrm{S}$:
$\{$ CHECK, EVAL $\} \leftarrow{ }^{\$}$ Partitions $[\{1, \ldots, n\}]$

(R believes majority EVAL instances are OK)

Cut-and-choose warmup
 1. Commit phase

(R believes majority EVAL instances are OK)

For $j \in$ EVAL:
msg mask masking

Cut-and-choose warmup

1. Commit phase

Legend:

S = Sender; R = Receiver
$n=$ \# instances;
$j=$ index of instance

If S*, hash may differ from hash of PRG of seed
(Cut-and-Choose challenges) $\mathrm{R} \rightarrow \mathrm{S}:$
$\{$ CHECK,$~ E V A L\} \leftarrow{ }^{\$}$ Partitions $[\{1, \ldots, n\}]$

Cut-and-choose warmup 1. Commit phase

If S*, hash may differ from hash of PRG of seed
(Cut-and-Choose challenges) $\mathrm{R} \rightarrow \mathrm{S}$:
$\{$ CHECK, EVAL $\} \leftarrow{ }^{\$}$ Partitions $[\{1, \ldots, n\}]$

(R believes majority EVAL instances are OK)
For $j \in$ EVAL:
msg mask masking

Extraction $\left(\operatorname{Sim}_{R}\right)$:

$$
\begin{aligned}
& \text { (1) }=\operatorname{Ext}(\text { (}) \\
& \text { SP=PRG[D] } \\
& \text { 国 }=\hat{j} \oplus
\end{aligned}
$$

Cut-and-choose warmup 1. Commit phase

Legend:

S = Sender; R = Receiver $n=$ \# instances;
$j=$ index of instance

If S*, hash may differ from hash of PRG of seed
(Cut-and-Choose challenges) $\mathrm{R} \rightarrow \mathrm{S}$:
$\{$ CHECK, EVAL $\} \not{ }^{\$}$ Partitions $[\{1, \ldots, n\}]$

Cut-and-choose warmup

1. Commit phase

Legend:

S = Sender; R = Receiver
$n=$ \# instances;
$j=$ index of instance

If S*, hash may differ from hash of PRG of seed
(Cut-and-Choose challenges) $\mathrm{R} \rightarrow \mathrm{S}$:
$\{$ CHECK, EVAL $\} \nleftarrow^{\$}$ Partitions $[\{1, \ldots, n\}]$

For $j \in$ CHECK:	
$\mathrm{S} \rightarrow \mathrm{R}$	R
$\operatorname{Open}(\boldsymbol{i})$	\underline{j} ¢ $=$ PRG[i$]$
$\operatorname{Open}(\{\hat{j}\})$	$\text { CR-Hash }(\underset{j}{\xi})=? \cdot ?$

(R believes majority EVAL instances are OK)
For $j \in$ EVAL: msg mask masking

Extraction $\left(\operatorname{Sim}_{R}\right)$:

$$
\begin{aligned}
& \text { i }=\operatorname{Ext}(\vec{a}) \\
& \text { G } \\
& \widetilde{\tilde{i}}=\mathscr{j} \boldsymbol{j}
\end{aligned}
$$

2. Open phase

$$
\mathrm{S} \rightarrow \mathrm{R}:
$$

$\operatorname{Open}(\hat{j}\}): j \in \operatorname{Eval}$
Reveal
r. $\mathrm{t}=\boldsymbol{1}$

R: CR-Hash $(\hat{j}\})=?\left\{\begin{aligned}\{\hat{j}\} \\ j\end{aligned}\right.$

Cut-and-choose warmup 1. Commit phase

Part 3 Outline

Improve
Complex Rel W

13

If S^{*}, hash may differ from hash of PRG of seed
(Cut-and-Choose challenges) $\mathrm{R} \rightarrow \mathrm{S}$:
$\{$ CHECK, EVAL $\} \leftarrow^{\$}$ Partitions $[\{1, \ldots, n\}]$

$$
\mathrm{S} \rightarrow \mathrm{R}:
$$

$\operatorname{Open}(\hat{j}\}): j \in \operatorname{Eval}$
Reveal

2. Open phase

Reveal\approx[^1]Ret= $=$ • \oplus
R: CR-Hash $(\hat{j}\})=?\{\hat{j}\}$
Equivocation by Sims:

$$
\begin{aligned}
& \xi=\approx \bigoplus \boldsymbol{j} \\
& \{\hat{j}\}=C R-H a s h(\mathcal{j}\}) \\
& \text { Equiv-Open }\left(\left\{\begin{array}{l}
\hat{j}\} \\
\}
\end{array}\right)\right.
\end{aligned}
$$

"Very-Efficient Simulatable Flipping of Many Coins into-a-well"

Improving communication

Improving communication

Legend:

$m=$ message; $n=\#$ instances;
$e=\#(\mathrm{EVAL}) ; v=\#(\mathrm{CHECK})$

Problems with the warmup protocol

- Ensure correct extraction of message m implies many instances
- E.g. 40 bits statistical security $\Rightarrow n \geq 123$, e.g. $(n, v, e)=(123,74,49)$.
- High communication complexity: $|\boldsymbol{m}| \times \boldsymbol{e}$

Improving communication

Legend:
$m=$ message; $n=\#$ instances;
$e=\#(\mathrm{EVAL}) ; v=\#(\mathrm{CHECK})$

Problems with the warmup protocol

- Ensure correct extraction of message m implies many instances
- E.g. 40 bits statistical security $\Rightarrow n \geq 123$, e.g. $(n, v, e)=(123,74,49)$.
- High communication complexity: $|\boldsymbol{m}| \times e$

Add two ingredients:

Improving communication

$m=$ message; $n=\#$ instances;
$e=\#(\mathrm{EVAL}) ; v=\#(\mathrm{CHECK})$

Problems with the warmup protocol

- Ensure correct extraction of message m implies many instances
- E.g. 40 bits statistical security $\Rightarrow n \geq 123$, e.g. $(n, v, e)=(123,74,49)$.
- High communication complexity: $|\boldsymbol{m}| \times e$

Add two ingredients:

- Authenticators: "authenticate" the message before masking it

Improving communication

$m=$ message; $n=\#$ instances;
$e=\#(\mathrm{EVAL}) ; v=\#(\mathrm{CHECK})$

Problems with the warmup protocol

- Ensure correct extraction of message m implies many instances
- E.g. 40 bits statistical security $\Rightarrow n \geq 123$, e.g. $(n, v, e)=(123,74,49)$.
- High communication complexity: $|\boldsymbol{m}| \times \boldsymbol{e}$

Add two ingredients:

- Authenticators: "authenticate" the message before masking it
$\Rightarrow \operatorname{Sim}_{\mathrm{R}}$ can verify each tentative extracted m for correctness
$\Rightarrow 1$ good Eval instance is enough \Rightarrow better params $(\boldsymbol{n}, \boldsymbol{v}, \boldsymbol{e})=(41, \geq \mathbf{2 1}, \leq \mathbf{2 0})$

Improving communication

$m=$ message; $n=\#$ instances;
$e=\#(\mathrm{EVAL}) ; v=\#(\mathrm{CHECK})$

Problems with the warmup protocol

- Ensure correct extraction of message m implies many instances
- E.g. 40 bits statistical security $\Rightarrow n \geq 123$, e.g. $(n, v, e)=(123,74,49)$.
- High communication complexity: $|\boldsymbol{m}| \times e$

Add two ingredients:

- Authenticators: "authenticate" the message before masking it
$\Rightarrow \operatorname{Sim}_{\mathrm{R}}$ can verify each tentative extracted m for correctness
$\Rightarrow 1 \operatorname{good}$ Eval instance is enough \Rightarrow better params $(\boldsymbol{n}, \boldsymbol{v}, \boldsymbol{e})=(41, \geq \mathbf{2 1}, \leq \mathbf{2 0})$

Improving communication

$m=$ message; $n=\#$ instances;
$e=\#(\mathrm{EVAL}) ; v=\#(\mathrm{CHECK})$

Problems with the warmup protocol

- Ensure correct extraction of message m implies many instances
- E.g. 40 bits statistical security $\Rightarrow n \geq 123$, e.g. $(n, v, e)=(123,74,49)$.
- High communication complexity: $|\boldsymbol{m}| \times e$

Add two ingredients:

- Authenticators: "authenticate" the message before masking it
$\Rightarrow \operatorname{Sim}_{\mathrm{R}}$ can verify each tentative extracted m for correctness
$\Rightarrow 1$ good Eval instance is enough \Rightarrow better params $(\boldsymbol{n}, \boldsymbol{v}, \boldsymbol{e})=(41, \geq \mathbf{2 1}, \leq \mathbf{2 0})$

Complexity

Complexity

E.g. C\&C and erasure code parameters:

- $\boldsymbol{n}=\mathbf{1 1 9}$ (\# instances in cut-and-choose)
- $\boldsymbol{v}=\mathbf{7 3}$ (\# committed seeds and hashes)
- $\boldsymbol{e}=46$ (\# shares = \# Eval instances)
- t=23(\# good shares needed by Simulator)

Complexity

E.g. C\&C and erasure code parameters:

- $\boldsymbol{n}=\mathbf{1 1 9}$ (\# instances in cut-and-choose)
- $\boldsymbol{v}=\mathbf{7 3}$ (\# committed seeds and hashes)
- $\boldsymbol{e}=46$ (\# shares = \# Eval instances)
- $\boldsymbol{t}=\mathbf{2 3}$ (\# good shares needed by Simulator)

Complexity

E.g. C\&C and erasure code parameters:

- $\boldsymbol{n}=\mathbf{1 1 9}$ (\# instances in cut-and-choose)
- $\boldsymbol{v}=\mathbf{7 3}$ (\# committed seeds and hashes)
- $\boldsymbol{e}=46$ (\# shares = \# Eval instances)
- t=23(\# good shares needed by Simulator)

Comm. and comp. rates:

- $\boldsymbol{r}=\boldsymbol{e} / \boldsymbol{t}=\mathbf{2}$ (comm. expansion-rate in commit phase, with rate-1 erasure code)
- $\boldsymbol{r} \boldsymbol{\prime}=\boldsymbol{n} / \boldsymbol{t}=\mathbf{5 . 1 7}$ (length of overall PRG output divided by message length) (same in respect to CR-Hash input)

Complexity

E.g. C\&C and erasure code parameters:

- $\boldsymbol{n}=\mathbf{1 1 9}$ (\# instances in cut-and-choose)
- $\boldsymbol{v}=\mathbf{7 3}$ (\# committed seeds and hashes)
- $\boldsymbol{e}=46$ (\# shares = \# Eval instances)
- t=23(\# good shares needed by Simulator)

Comm. and comp. rates:

- $\boldsymbol{r}=\boldsymbol{e} / \boldsymbol{t}=\mathbf{2}$ (comm. expansion-rate in commit phase, with rate-1 erasure code)
- $\boldsymbol{r} \boldsymbol{\prime}=\boldsymbol{n} / \boldsymbol{t}=\mathbf{5 . 1 7}$ (length of overall PRG output divided by message length) (same in respect to CR-Hash input)

Some notes:

Complexity

E.g. C\&C and erasure code parameters:

- $\boldsymbol{n}=\mathbf{1 1 9}$ (\# instances in cut-and-choose)
- $\boldsymbol{v}=\mathbf{7 3}$ (\# committed seeds and hashes)
- $\boldsymbol{e}=46$ (\# shares = \# Eval instances)
- $\boldsymbol{t}=\mathbf{2 3}$ (\# good shares needed by Simulator)

Comm. and comp. rates:

- $\boldsymbol{r}=\boldsymbol{e} / \boldsymbol{t}=\mathbf{2}$ (comm. expansion-rate in commit phase, with rate- 1 erasure code)
- $\boldsymbol{r}^{\prime}=\boldsymbol{n} / \boldsymbol{t}=\mathbf{5 . 1 7}$ (length of overall PRG output divided by message length) (same in respect to CR-Hash input)

Some notes:

- Can decrease rates r and r^{\prime} closer to 1 (at the cost of larger erasure-code parameters)

Complexity

E.g. C\&C and erasure code parameters:

- $\boldsymbol{n}=\mathbf{1 1 9}$ (\# instances in cut-and-choose)
- $\boldsymbol{v}=\mathbf{7 3}$ (\# committed seeds and hashes)
- $\boldsymbol{e}=46$ (\# shares = \# Eval instances)
- $\boldsymbol{t}=\mathbf{2 3}$ (\# good shares needed by Simulator)

Comm. and comp. rates:

- $\boldsymbol{r}=\boldsymbol{e} / \boldsymbol{t}=\mathbf{2}$ (comm. expansion-rate in commit phase, with rate- 1 erasure code)
- $\boldsymbol{r} \boldsymbol{\prime}=\boldsymbol{n} / \boldsymbol{t}=\mathbf{5 . 1 7}$ (length of overall PRG output divided by message length) (same in respect to CR-Hash input)

Some notes:

- Can decrease rates r and r^{\prime} closer to 1 (at the cost of larger erasure-code parameters)
- Sender and Receiver only need to encode; only simulator needs to decode

Complexity

E.g. C\&C and erasure code parameters:

- $\boldsymbol{n}=\mathbf{1 1 9}$ (\# instances in cut-and-choose)
- $\boldsymbol{v}=\mathbf{7 3}$ (\# committed seeds and hashes)
- $\boldsymbol{e}=46$ (\# shares = \# Eval instances)
- $\boldsymbol{t}=\mathbf{2 3}$ (\# good shares needed by Simulator)

Comm. and comp. rates:

- $\boldsymbol{r}=\boldsymbol{e} / \boldsymbol{t}=\mathbf{2}$ (comm. expansion-rate in commit phase, with rate-1 erasure code)
- $\boldsymbol{r} \boldsymbol{\prime}=\boldsymbol{n} / \boldsymbol{t}=5.17$ (length of overall PRG output divided by message length) (same in respect to CR-Hash input)

Some notes:

- Can decrease rates r and r^{\prime} closer to 1 (at the cost of larger erasure-code parameters)
- Sender and Receiver only need to encode; only simulator needs to decode
- \# hashes (and \# Equiv-Coms) can be reduced to 1, if allowing delayed verification ($\mathrm{Sim}_{\mathrm{R}}$ can still extract, or detect non-ability of Sender to open)

Complexity

E.g. C\&C and erasure code parameters:

- $\boldsymbol{n}=\mathbf{1 1 9}$ (\# instances in cut-and-choose)
- $\boldsymbol{v}=\mathbf{7 3}$ (\# committed seeds and hashes)
- $\boldsymbol{e}=46$ (\# shares = \# Eval instances)
- $\boldsymbol{t}=\mathbf{2 3}$ (\# good shares needed by Simulator)

Comm. and comp. rates:

- $\boldsymbol{r}=\boldsymbol{e} / \boldsymbol{t}=\mathbf{2}$ (comm. expansion-rate in commit phase, with rate-1 erasure code)
- $\boldsymbol{r} \boldsymbol{\prime}=\boldsymbol{n} / \boldsymbol{t}=\mathbf{5 . 1 7}$ (length of overall PRG output divided by message length) (same in respect to CR-Hash input)

Some notes:

- Can decrease rates r and r^{\prime} closer to 1 (at the cost of larger erasure-code parameters)
- Sender and Receiver only need to encode; only simulator needs to decode
- \# hashes (and \# Equiv-Coms) can be reduced to 1, if allowing delayed verification ($\mathrm{Sim}_{\mathrm{R}}$ can still extract, or detect non-ability of Sender to open)
- Ideal Equiv-Com and ideal Ext-Com can be instantiated in other setups, e.g. CRS

Complexity

E.g. C\&C and erasure code parameters:

- $\boldsymbol{n}=\mathbf{1 1 9}$ (\# instances in cut-and-choose)
- $\boldsymbol{v}=\mathbf{7 3}$ (\# committed seeds and hashes)
- $\boldsymbol{e}=46$ (\# shares = \# Eval instances)
- $\boldsymbol{t}=\mathbf{2 3}$ (\# good shares needed by Simulator)

Comm. and comp. rates:

- $\boldsymbol{r}=\boldsymbol{e} / \boldsymbol{t}=\mathbf{2}$ (comm. expansion-rate in commit phase, with rate-1 erasure code)
- $\boldsymbol{r} \boldsymbol{\prime}=\boldsymbol{n} / \boldsymbol{t}=\mathbf{5 . 1 7}$ (length of overall PRG output divided by message length) (same in respect to CR-Hash input)

Some notes:

- Can decrease rates r and r^{\prime} closer to 1 (at the cost of larger erasure-code parameters)
- Sender and Receiver only need to encode; only simulator needs to decode
- \# hashes (and \# Equiv-Coms) can be reduced to 1, if allowing delayed verification ($\mathrm{Sim}_{\mathrm{R}}$ can still extract, or detect non-ability of Sender to open)
- Ideal Equiv-Com and ideal Ext-Com can be instantiated in other setups, e.g. CRS
- Interaction due to cut-\&-choose can be removed by using Non-Programmable Random Oracle (and increasing statistical security parameter)

Some related work

Some related work

Some UC-Com Schemes in 2011, 2013: [Lin11, FLM11, BCPV13]

Some related work

Some UC-Com Schemes in 2011, 2013: [Lin11, FLM11, BCPV13]

- Comm: several group elements exchanged per committed short-string.

Outline
Warmup
Improve
Complex
Rel W
16

Some related work

Some UC-Com Schemes in 2011, 2013: [Lin11, FLM11, BCPV13]

- Comm: several group elements exchanged per committed short-string.
- Comp: several exponentiations per committed short string.

Some related work

Some UC-Com Schemes in 2011, 2013: [Lin11, FLM11, BCPV13]

- Comm: several group elements exchanged per committed short-string.
- Comp: several exponentiations per committed short string.
- Some constructions achieve adaptive security.

Some related work

Some UC-Com Schemes in 2011, 2013: [Lin11, FLM11, BCPV13]

- Comm: several group elements exchanged per committed short-string.
- Comp: several exponentiations per committed short string.
- Some constructions achieve adaptive security.

$\underline{2014}$ onward - rate-1+ ε UC-Com schemes (static security)

Some related work

Some UC-Com Schemes in 2011, 2013: [Lin11, FLM11, BCPV13]

- Comm: several group elements exchanged per committed short-string.
- Comp: several exponentiations per committed short string.
- Some constructions achieve adaptive security.

2014 onward - rate- $1+\varepsilon$ UC-Com schemes (static security)

- [GIKW14]:
- First proposal; uses δ-OT instead of C\&C.
- Requires Error-correction code (ECC, for semantic errors), instead of erasure code.

Some related work

Some UC-Com Schemes in 2011, 2013: [Lin11, FLM11, BCPV13]

- Comm: several group elements exchanged per committed short-string.
- Comp: several exponentiations per committed short string.
- Some constructions achieve adaptive security.

2014 onward - rate- $1+\varepsilon$ UC-Com schemes (static security)

- [GIKW14]:
- First proposal; uses δ-OT instead of C\&C.
- Requires Error-correction code (ECC, for semantic errors), instead of erasure code.
- [DDGN14,CDD+15]
- Also OT and ECC based
- Enable Homomorphic commitments.

Some related work

Some UC-Com Schemes in 2011, 2013: [Lin11, FLM11, BCPV13]

- Comm: several group elements exchanged per committed short-string.
- Comp: several exponentiations per committed short string.
- Some constructions achieve adaptive security.

2014 onward - rate- $1+\varepsilon$ UC-Com schemes (static security)

- [GIKW14]:
- First proposal; uses δ-OT instead of C\&C.
- Requires Error-correction code (ECC, for semantic errors), instead of erasure code.
- [DDGN14,CDD+15]
- Also OT and ECC based
- Enable Homomorphic commitments.
- [FJNT16] (Also OT based):
- Uses consistency check to allow erasure code instead of ECC
- Enable homomorphic commitments.

Roadmap

1. Simulatable coin-flipping and commitments
2. Protocol \#1: coin-flipping (simulatable with rewinding)
3. Protocol \#2: UC Commitment Scheme
4. Open questions / research directions

Possible research directions:

Possible research directions:

- Formalize ideal Ext-but-not-Equiv and Equiv-but-not-Ext Com schemes (initial attempt at full version of the paper)

Possible research directions:

- Formalize ideal Ext-but-not-Equiv and Equiv-but-not-Ext Com schemes (initial attempt at full version of the paper)
- Actual instantiations / efficiency measurement (erasure code, ...) / tradeoffs (communication vs. computation)

Possible research directions:

- Formalize ideal Ext-but-not-Equiv and Equiv-but-not-Ext Com schemes (initial attempt at full version of the paper)
- Actual instantiations / efficiency measurement (erasure code, ...) / tradeoffs (communication vs. computation)
- Efficient UC-Com schemes (rate-1, linear-time) in adaptive model?

Possible research directions:

- Formalize ideal Ext-but-not-Equiv and Equiv-but-not-Ext Com schemes (initial attempt at full version of the paper)
- Actual instantiations / efficiency measurement (erasure code, ...) / tradeoffs (communication vs. computation)
- Efficient UC-Com schemes (rate-1, linear-time) in adaptive model?
- Decrease erasure-code parameters needed for statistical security parameter?

Possible research directions:

- Formalize ideal Ext-but-not-Equiv and Equiv-but-not-Ext Com schemes (initial attempt at full version of the paper)
- Actual instantiations / efficiency measurement (erasure code, ...) / tradeoffs (communication vs. computation)
- Efficient UC-Com schemes (rate-1, linear-time) in adaptive model?
- Decrease erasure-code parameters needed for statistical security parameter?
- Homomorphic properties?

Possible research directions:

- Formalize ideal Ext-but-not-Equiv and Equiv-but-not-Ext Com schemes (initial attempt at full version of the paper)
- Actual instantiations / efficiency measurement (erasure code, ...) / tradeoffs (communication vs. computation)
- Efficient UC-Com schemes (rate-1, linear-time) in adaptive model?
- Decrease erasure-code parameters needed for statistical security parameter?
- Homomorphic properties?
- Selective opening of parts of message?

Possible research directions:

- Formalize ideal Ext-but-not-Equiv and Equiv-but-not-Ext Com schemes (initial attempt at full version of the paper)
- Actual instantiations / efficiency measurement (erasure code, ...) / tradeoffs (communication vs. computation)
- Efficient UC-Com schemes (rate-1, linear-time) in adaptive model?
- Decrease erasure-code parameters needed for statistical security parameter?
- Homomorphic properties?
- Selective opening of parts of message?
- More efficient UC Coin-Flipping (2 bits / flipped coin \& comp. efficient)?

Thank you for your attention

Very Efficient Simulatable Flipping of Many Coins into-a-well luis.papers@gmail.com
https://ia.cr/2015/640

References mentioned in this presentation

(More references in paper)

- [Blu83]: Blum: Coin flipping by telephone - a protocol for solving impossible problems. SIGACT News 15, 2327 (1983). Appeared also at CRYPTO 1981
- [Lin03]: Lindell. Parallel coin-tossing and constant-round secure two-party computation. Jr Cryptology, 16(3), 2003.
- [PW09]: Pass and Wee. Black-box constructions of two-party protocols from one-way functions. TCC 2009
- [Lin11]: Lindell. Highly-efficient universally-composable commitments based on the DDH assumption. EUROCRYPT 2011
- [BCVP13]: Blazy and Chevalier and Pointcheval, and Vergnaud. Analysis and improvement of Lindell's UCsecure commitment schemes. ACNS 2013
- [FLM11]: Fischlin and Libert and Manulis. Non-interactive and re-usable universally composable string commitments with adaptive security. ASIACRYPT 2011
- [GK96]: Goldreich and Kahan. How to construct constant-round zero-knowledge proof systems for NP. Jr Cryptology, 9(3), 1996.
- [GIKW14] Garay and Ishai and Kumaresan and Wee. On the complexity of UC commitments. EUROCRYPT 2014
- [CDD+15]: Cascudo and Damgård and David and Giacomelli and Nielsen and Trifiletti. Additively homomorphic UC commitments with optimal amortized overhead. PKC 2015
- [DDGN14]: Damgård and David and Giacomelli and Nielsen. Compact VSS and efficient homomorphic UC commitments. ASIACRYPT 2014
- [FJNT16]: Frederiksen, Jakobsen, Nielsen, and Trifiletti. On the complexity of additively homomorphic UC commitments. TCC 2016-A

References mentioned in this presentation

(More references in paper)

- [Blu83]: Blum: Coin flipping by telephone - a protocol for solving impossible problems. SIGACT News $15,23-$ 27 (1983). Appeared also at CRYPTO 1981
- [Lin03]: Lindell. Parallel coin-tossing and constant-round secure two-party computation. Jr Cryptology, 16(3), 2003.
- [PW09]: Pass and Wee. Black-box constructions of two-party protocols from one-way functions. TCC 2009
- [Lin11]: Lindell. Highly-efficient universally-composable commitments based on the DDH assumption. EUROCRYPT 2011
- [BCVP13]: Blazy and Chevalier and Pointcheval, and Vergnaud. Analysis and improvement of Lindell's UCsecure commitment schemes. ACNS 2013
- [FLM11]: Fischlin and Libert and Manulis. Non-interactive and re-usable universally composable string commitments with adaptive security. ASIACRYPT 2011
- [GK96]: Goldreich and Kahan. How to construct constant-round zero-knowledge proof systems for NP. Jr Cryptology, 9(3), 1996.
- [GIKW14] Garay and Ishai and Kumaresan and Wee. On the complexity of UC commitments. EUROCRYPT 2014
- [CDD+15]: Cascudo and Damgård and David and Giacomelli and Nielsen and Trifiletti. Additively homomorphic UC commitments with optimal amortized overhead. PKC 2015
- [DDGN14]: Damgård and David and Giacomelli and Nielsen. Compact VSS and efficient homomorphic UC commitments. ASIACRYPT 2014
- [FJNT16]: Frederiksen, Jakobsen, Nielsen, and Trifiletti. On the complexity of additively homomorphic UC commitments. TCC 2016-A

[^0]: Part 1 Ideal CF

 TradTemp Ext-Equiv
 Intuition

[^1]: C 2014-2016 Luís Brandão

