Very-Efficient Simulatable Flipping
of Many Coins into-a-Well

(and a New Universally-Composable Commitment Scheme)
Luis Brandao'*

"University of Lisbon (Portugal)
’Carnegie Mellon University (USA)

Presented at Public Key Cryptography
March 09, 2016 @ Taipei, Taiwan

Information and Communication Technologies Institute (&) Electrical & Computer

Supported as a Ph.D. student at FCUL-DI and CMU-ECE by [. ENGINEERING
the Fundacdo para a Ciéncia e a Tecnologia (FCT) (Portuguese F?II.:IT%%]:}}YII?INI?LIIJ :QIHIR’?HAII: CarnegieMellon
Foundation for Science and Technology) through the Carnegie :ancias FCT Fundagio para a Ciéncia e a Tecnologia

Mellon Portugal Program, under Grant SFRH/BD/33770/2009. jiisboq MINISTERIO DA EDUCACAO E CIENCIA PORTUGAL

Roadmap

1. Simulatable coin-flipping and commitments

2. Protocol #1: coin-flipping (simulatable with rewinding)

3. Protocol #2: UC Commitment Scheme

4. Open questions / research directions

Part 1
Ideal CF

TradTemp
Ext-Equiv

Intuition

2

Roadmap

1. Simulatable coin-flipping and commitments

2. Protocol #1: coin-flipping (simulatable with rewinding)

3. Protocol #2: UC Commitment Scheme

4. Open questions / research directions

Part 1
Ideal CF

TradTemp
Ext-Equiv

Intuition

2

An ideal coin-flipping

Part 1
Ideal CF

TradTemp
Ext-Equiv

Intuition

3

An ideal coin-flipping Legend:

TTP = trusted third party

RN

>

Environment

P, =Alice

&,

TTP

Part 1
Ideal CF

TradTemp
Ext-Equiv

Intuition

3

An ideal coin-flipping Legend:

TTP = trusted third party

Part 1
Ideal CF

TradTemp
Ext-Equiv

Intuition

3

An ideal coin-flipping|into-a-well | ...

TTP = trusted third party

R

>

Environment

P,=Alice 1. Start

2.m
-
3a. Accept

Part 1
Ideal CF

TradTemp
Ext-Equiv

Intuition

3

Part 1

Ideal CF

TradTemp
Ext-Equiv

Intuition

3

P

An ideal coin-flipping into-a-well

Legend:
TTP = trusted third party

3b.m

Part 1

Ideal CF

TradTemp
Ext-Equiv

Intuition

3

P

An ideal coin-flipping into-a-well

Legend:
TTP = trusted third party

3b.m

An ideal coin-flipping into-a-well ...
TTP = trusted third party
CRS = common reference string

3a. Accept 3b.m

> TTP (Only if P4 accepted)

Example motivations

- Real world decisions (e.g., who gets the car? [Blum8&3])

- Enable probabilistic output of external two-party protocol
Part 1 « Random string (e.g., CRS) for another simulatable protocol

Ideal CF

TradTemp
Ext-Equiv

Intuition

3

An ideal coin-flipping into-a-well ...
TTP = trusted third party
CRS = common reference string

P,=Alice - - '
S
Jek . e e
-
3a. Accept 3b.m
TTP (Only if P4 accepted)

Example motivations
- Real world decisions (e.g., who gets the car? [Blum8&3])

- Enable probabilistic output of external two-party protocol
Part 1 « Random string (e.g., CRS) for another simulatable protocol

Ideal CF

maemp Research question: How to perform two-party coin-flipping, 1.e., without TTP,
ExtEquiv efficiently for many coins in parallel, within the ideal/real simulation paradigm?

Intuition

3

An ideal coin-flipping into-a-well ...
TTP = trusted third party
CRS = common reference string

P, =Alice

: =) :
S
Jek . e e
-
3a. Accept 3b.m
TTP (Only if P4 accepted)

Example motivations
- Real world decisions (e.g., who gets the car? [Blum8&3])

- Enable probabilistic output of external two-party protocol
Part 1 « Random string (e.g., CRS) for another simulatable protocol

Ideal CF

maemp Research question: How to perform two-party coin-flipping, 1.e., without TTP,
ExtEquiv efficiently for many coins in parallel, within the ideal/real simulation paradigm?

Intuition

3

(Adversarial model: static, malicious, computational)

An early two-party coin-flipping protocol [Blumsi-83]

Part 1
Ideal CF

TradTemp

Ext-Equiv

Intuition

4

An early two-party coin-flipping protocol [Blumsi-83]

Iy
Of (Hiding,
* E Binding)
I !; 1. Commit Alice’s contribution

Part 1
Ideal CF

TradTemp

Ext-Equiv

Intuition

4

An early two-party coin-flipping protocol [Blumsi-83]

O 1
J (Hiding,
E Binding)

1. Commit Alice’s contribution>

2. Send Bob’é contribution

-«

Part 1
Ideal CF

TradTemp

Ext-Equiv

Intuition

4

An early two-party coin-flipping protocol [Blumsi-83]

Iy
Of (Hiding,
* E Binding)
I !; 1. Commit Alice’s contribution

2. Send Bob’é contribution

-«

(ma)
Open(&)

3. Open Alice’s contribution >

Part 1
Ideal CF

TradTemp

Ext-Equiv

Intuition

4

An early two-party coin-flipping protocol [Blumsi-83]

2
Of (Hiding,
* E Binding)
I !; 1. Commit Alice’s contribution gl

2. Send Bob’é contribution

-«

(ma)
Open(&)

3. Open Alice’s contribution >

Part 1 4. Locally combine (XOR) the two contributions
Ideal CF (
TradTemp % @, e (m =my @ mp) % @, —
Ext-Equiv

Intuition

4

An early two-party coin-flipping protocol [Blumsi-83]

] P oy
Of (Hiding,
* E Binding) (-
I !; 1. Commit Alice’s contribution gl

2. Send Bob’é contribution

-«

(ma)
Open(&)

3. Open Alice’s contribution >

Part 1 4. Locally combine (XOR) the two contributions
Ideal CF

frodTemy =D (m=my ® mp) =D

Ext-Equiv

Simulatability = In a simulation, the Simulator (Sim) can induce

Intuition

4

any desired outcome (the one decided by TTP in ideal world).

An early two-party coin-flipping protocol [Blumsi-83]

(n%)
= —
i = O (Hiding,
* E Binding) i ! ;
I !; 1. Commit Alice’s contribu‘[ion> @@
o
P Simulator <2 ,
& (mp)
o o contribution
2. Send Bob’s contribution
-
(n%)
Open(&)
3. Open Alice’s contribution >
Part 1 4. Locally combine (XOR) the two contributions
Ideal CF
fradTemp = @ — (m=my @© mp) = @ —
Ext-Equiv

Simulatability = In a simulation, the Simulator (Sim) can induce

Intuition

4

any desired outcome (the one decided by TTP in ideal world).

Part 1
Ideal CF

An early two-party coin-flipping protocol [Blumsi-83]

O 1
J (Hiding,
E Binding)

1. Commit Alice’s contribution>

N
3

>

N

(o

o
Y Simulator <2 ,
o o contribution
2. Send Bob’s contribution
|
Y (ma)
quivocate =
Alice’s needed Open(%)
contributipn CX@ 3. Open Alice’s contribution
= -
Simulator

4. Locally combine (XOR) the two contributions

=0 (m = m ® mp) =0

TradTemp

Ext-Equiv

Intuition

4

Simulatability = In a simulation, the Simulator (Sim) can induce

any desired outcome (the one decided by TTP in ideal world).

Part 1
Ideal CF

An early two-party coin-flipping protocol [Blumsi-83]

O 1
J (Hiding,
E Binding)

1. Commit Alice’s contribution>

N
3

>

N

(o

o
o
Y Simulator <2 ,
. (mp) Extract Alice's
’ o contribution
2. Send Bob’s contribution
D |
Equivocate (”%) Blum used an Equiv-but-
Alice’s needed Open(%) not-Ext Com scheme. (Yet,

contribution

C?:@ 3. Open Alice’s contribution - using rewinding, Simg can non-
(o)

: local Ext m,, but problem if
Simulator

P4’s Prob-Abort is unknown.)

4. Locally combine (XOR) the two contributions

=0 (m = m ® mp) =0

TradTemp

Ext-Equiv

Intuition

4

Simulatability = In a simulation, the Simulator (Sim) can induce

any desired outcome (the one decided by TTP in ideal world).

Example of an Ext-and-Equiv Com Scheme [Lin03]

Part 1
Ideal CF
TradTemp

Ext-Equivi

Intuition

S

Example of an Ext-and-Equiv Com Scheme [Lin03]

Sender

Commit phase:

Open phase:

Part 1
Ideal CF
TradTemp

Ext-Equivi

Intuition

5

Receiver

Example of an Ext-and-Equiv Com Scheme [Lin03]

Sender Receiver
l , ZKAoK (m A)

: . Hiding, Bindin
Commit phase: (Hfiding, Bindine) >
Open phase:

Part 1

Ideal CF

TradTemp

Ext-Equivi Lesend:

Intuition ZKA = Zero-Knowledge Argument

ZKAoK = ZKA of knowledge

5

Example of an Ext-and-Equiv Com Scheme [Lin03]

Sender Receiver
l , ZKAoK (m A)
-

(Hiding, Binding)

Commit phase:

N
my, ZKA (my1s committed by)>

Open phase:
Part 1
Ideal CF
TradTemp
Ext-Equivi Legend:
Intuition ZKA = Zero-Knowledge Argument

ZKAoK = ZKA of knowledge

5

Example of an Ext-and-Equiv Com Scheme [Lin03]

Sender Receiver
l , ZKAoK (m A)
-

(Hiding, Binding)

Commit phase:

N
my, ZKA (my1s committed by)>

Another example: [PW09] achieve Ext&Equiv via cut-and-choose methods.

Open phase:

Part 1
Ideal CF
TradTemp
Ext-Equivi Legend:
Intuition ZKA = Zero-Knowledge Argument

ZKAoK = ZKA of knowledge

5

Example of an Ext-and-Equiv Com Scheme [Lin03]

Sender Receiver
l , ZKAoK (m A)
-

(Hiding, Binding)

Commit phase:

N
my, ZKA (my1s committed by)>

Another example: [PW09] achieve Ext&Equiv via cut-and-choose methods.

Open phase:

Problem: expensive in computational and/or communication terms

Part 1
Ideal CF
TradTemp
Ext-Equivi Legend:
Intuition ZKA = Zero-Knowledge Argument

ZKAoK = ZKA of knowledge

5

Example of an Ext-and-Equiv Com Scheme [Lin03]

Sender Receiver
l , ZKAoK (m A)

(Hiding, Binding)

Commit phase: -

N
my, ZKA (my1s committed by)>

Another example: [PW09] achieve Ext&Equiv via cut-and-choose methods.

Open phase:

Problem: expensive in computational and/or communication terms

Part 1
Ideal CF [.
o Can we make it more efficient?
Ext-Equivi Lesend:
Intuition ZKA = Zero-Knowledge Argument

ZKAoK = ZKA of knowledge

5

Example of an Ext-and-Equiv Com Scheme [Lin03]

Sender Receiver
R
l , ZKAOK (m A)

(Hiding, Binding)

Commit phase: -

N
my, ZKA (my1s committed by)>

Another example: [PW09] achieve Ext&Equiv via cut-and-choose methods.

Open phase:

Problem: expensive in computational and/or communication terms

Part 1
Ideal CF ° °
radTemn Can we make it more efficient?
Ext-Equivi .)) . .
: .C_l Note: [Lin03] actually uses this construction in the scope of a more Legend:
Intuition . . . ZKA = Zero-Knowledge Argument
general coin-flipping into a well, where P, only learns f(m @ mp) . ZKAOK = ZKA of knowledge

5

Initial intuition (insufficient)

Part 1
Ideal CF
TradTemp
Ext-Equiv

Intuition

6

Initial intuition (insufficient)

Part 1
Ideal CF
TradTemp
Ext-Equiv

Intuition

6

Initial intuition (insufficient)

Want to
commit | —~——
large | —~—~—
message

g

Receiver

Part 1
Ideal CF
TradTemp
Ext-Equiv

Intuition

6

Part 1
Ideal CF
TradTemp
Ext-Equiv

Intuition

6

Initial intuition (insufficient)

Short seed
Want to | — Ext-
commit | —~—— C
large | —~—~— om
messagel” — —

1

Ext-Com of seed

e

- 30

Receiver

Initial intuition (insufficient)

Short seed

@

PRG
EXt- \
Com

1

Want to

commit | —~——
large | —~—~—

message

-
-
<
<

Ext-Com of seed Long mask *

Receiver

ST

Part 1
Ideal CF
TradTemp
Ext-Equiv

Intuition

6

© 2014-2016 Luis Brandao “Very-Efficient Simulatable Flipping of Many Coins into-a-well” PKC 2016 (March 09)

Part 1
Ideal CF
TradTemp
Ext-Equiv

Intuition

6

Initial intuition (insufficient)

Short seed

@

PRG
EXt- \
Com

1

Want to
commit | —~——
large | —~—~—
message

-
-
<
<

Ext-Com of seed Long mask Long message *

Receiver

ST

Initial intuition (insufficient)

Want to
commit | —~——
large | —~—~—
message

Part 1
Ideal CF
TradTemp
Ext-Equiv

Intuition

6

© 2014-2016 Luis Brandao

Short seed

@

PRG
EXt- \
Com

-
-
<
<

@’\N
TN N
TN N
TN N

Long message

Ext-Com of seed Long mask

Ext-Com of message
(Akin to hybrid-encryption)

“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

- 30

Receiver

PKC 2016 (March 09)

Initial intuition (insufficient)

Want to
commit | —~——
large | —~—~—
message

@’\N
TN N
TN N
TN N

Long mask Long message

Part 1
Ideal CF
TradTemp
Ext-Equiv

Intuition

6

© 2014-2016 Luis Brandao

“Very-Efficient Simulatable Flipping of Many Coins into-a-well”

- 30

Receiver

PKC 2016 (March 09)

Initial intuition (insufficient)

Want to
commit | —~——
large | —~—~—
message

Long mask

Short hash

y{:}

Long message

- 30

Part 1
Ideal CF
TradTemp
Ext-Equiv

Intuition

6

Receiver

Initial intuition (insufficient)

Short hash
y ﬁ
Want to .
commit | —~—— Equiv-
large | —_ Com
messagel” — —

@

3

Long mask Long message Equiv-Com of hash &
Sender

Receiver

Part 1
Ideal CF
TradTemp
Ext-Equiv

Intuition

6

Initial intuition (insufficient)

Short hash

Want to
commit | —~——
large | —~—~—
message

CR-Has l :
Equiv-

Com

St
S |
By o

>

@
&
ong mask Long message Equiv-Com of hash
\
Sender

Receiver

Equiv-Com of message
(Akin to hash-then-sign)

Part 1
Ideal CF
TradTemp
Ext-Equiv

Intuition

6

Part 1
Ideal CF
TradTemp
Ext-Equiv

Intuition

6

Initial intuition (insufficient)

Short seed Short hash
Want to CR-Has
commit | —~—— Ext- Equiv-
large | —_ Com Com
messagel” — —

-
-
<
<

O
ong mask Long message) Equiv-Com of hash
\ \ -
Sender *

Ext-Com of message Equiv-Com of message
(Akin to hybrid-encryption) (Akin to hash-then-sign)

Receiver

Part 1
Ideal CF
TradTemp
Ext-Equiv

Intuition

6

Initial intuition (insufficient)

Short seed Short hash

CR-Has {,\v}
Equiv-

Ext-
Com Com

Want to
commit | —~——
large | —~—~—
message

O
ong mask Long message) Equiv-Com of hash
\ \ -
Sender

\ * Receiver

-
-
<
<

Ext-Com of message Equiv-Com of message
(Akin to hybrid-encryption) Akin to hash-then-sign
X — (gn),

NOT an Ext-&-Equiv Com of the message:
- Opening the Ext-Com of seed does not allow equivocation
- Removing the Ext-Com of seed would not allow extraction

Part 1
Ideal CF
TradTemp
Ext-Equiv

Intuition

6

Initial intuition (insufficient)

Short seed Short hash

CR-Has {,\v}
Equiv-

Ext-
Com

Want to
commit | —~——
large | —~—~—
message

Com

Q
ong mask Long message) Equiv-Com of hash
\ \ -
Sender

\ * Receiver

Ext-Com of message Equiv-Com of message
(Akin to hybrid-encryption) Akin to hash-then-sign
X — (gn),

NOT an Ext-&-Equiv Com of the message:
- Opening the Ext-Com of seed does not allow equivocation
- Removing the Ext-Com of seed would not allow extraction

This presentation — how to efficiently combine Ext and Equiv (for many bits)?

Part 1
Ideal CF
TradTemp
Ext-Equiv

Intuition

6

Initial intuition (insufficient)

Short seed Short hash
Want to CR-Has
commit | —~—— Ext- Equiv-
large | —_ Com Com
messagel” — —

Q
ong mask Long message) Equiv-Com of hash
\ \ -
Sender

\ * Receiver

Ext-Com of message Equiv-Com of message
(Akin to hybrid-encryption) Akin to hash-then-sign
X — (gn),

NOT an Ext-&-Equiv Com of the message:
- Opening the Ext-Com of seed does not allow equivocation
- Removing the Ext-Com of seed would not allow extraction

This presentation — how to efficiently combine Ext and Equiv (for many bits)?

« Prot #1: Coin-flipping simulatable-with-rewinding

Part 1
Ideal CF
TradTemp
Ext-Equiv

Intuition

6

Initial intuition (insufficient)

Short seed Short hash

CR-Has {,\v}
Equiv-

Ext-
Com

Want to
commit | —~——
large | —~—~—
message

Com

Q
ong mask Long message) Equiv-Com of hash
\ \ -
Sender

\ * Receiver

Ext-Com of message Equiv-Com of message
(Akin to hybrid-encryption) Akin to hash-then-sign
X — (gn),

NOT an Ext-&-Equiv Com of the message:
- Opening the Ext-Com of seed does not allow equivocation
- Removing the Ext-Com of seed would not allow extraction

This presentation — how to efficiently combine Ext and Equiv (for many bits)?
« Prot #1: Coin-flipping simulatable-with-rewinding

+ Prot #2: UC-Com scheme (namely without rewinding)

Roadmap

1. Simulatable coin-flipping and commitments

2. Protocol #1: coin-flipping (simulatable with rewinding)

3. Protocol #2: UC Commitment Scheme

mrz) 4. Open questions / research directions

Compare

New prot
Security
Compare

Complex

7

Different constructions (high level)

Part 2

Compare

Analyze

Complex

8

Different constructions (high level)
[Blum81-83] [Lin03], [PW09] This paper

Part 2

Compare

Analyze

Complex

8

Different constructions (high level)

[Blum81-83] [Lin03], [PW09] This paper

P, Py
1IN

(Equiv)
1 >
2. - "5

| ma \

(Equiv)
3 >

Part 2

Compare

Analyze

Complex

8

Different constructions (high level)

[Blum81-83]

1IN
N (Equiv) .
2. = "5
| ma \
(Equiv)
3 >

m=m, D mg

Problem: Can’t ensure
~ Prob(l) in ideal vs.
real world. In step 3, P,-
part2 Prob(l) before Simg

RW may (pathologic-
ally) differ from P,-

Prob(l) after RW.

Compare

Analyze

Complex

8

[Lin03], [PW09]

Legend: RW = rewind; Prob(L) = probability of abort.

This paper

Different constructions (high level)

[Blum81-83]

(Equiv)
1. >
m
2. = B
ma
(Equiv)
3 >

m=m, D mg

Problem: Can’t ensure
~ Prob(l) in ideal vs.
real world. In step 3, P,-
part2 Prob(l) before Simg
—1 RW may (pathologic-
ally) differ from P,-

Prob(l) after RW.

Compare

Analyze

Complex

8

[Lin03], [PW09]

(Ext&Equiv)

>

mp

ma
(Ext&Equiv)

>

m=m,®D mpg

Legend: RW = rewind; Prob(L) = probability of abort.

This paper

Different constructions (high level)

[Blum81-83]

(Equiv)
1. >
m
2. = B
mu
(Equiv)
3 >

m=m, D mg

Problem: Can’t ensure
~ Prob(l) in ideal vs.
real world. In step 3, P,-
part2 Prob(l) before Simg
—1 RW may (pathologic-
ally) differ from P,-

Prob(l) after RW.

Compare

Analyze

Complex

8

[Lin03], [PW09]

(Ext&Equiv)
1. >
mpg
-
ma
(Ext&Equiv)
>

m=m,®D mpg

« Lin03: ZK-based
« PWO09: Cut&Choose based

Simulatable, but inefficient
for large |m|.

Legend: RW = rewind; Prob(L) = probability of abort.

This paper

Part 2

Compare

Analyze

Complex

8

[Blum81-83]

(Equiv)
1. >
m
2. = B
mu
(Equiv)
3 >

m=m, D mg

Problem: Can’t ensure
~ Prob(l) in ideal vs.
real world. In step 3, P,-
Prob(l) before Simpg

RW may (pathologic-
ally) differ from P,-

Prob(l) after RW.

[Lin03], [PW09]

(Ext&Equiv)
1. >
mpg
-
ma
(Ext&Equiv)
>

m=m,®D mpg

« Lin03: ZK-based
« PWO09: Cut&Choose based

Simulatable, but inefficient
for large |m|.

Legend: RW = rewind; Prob(L) = probability of abort.

Different constructions (high level)

This paper

mpg
(Equiv)

Pp

mu
(Ext)

mp
(Equiv)\

Lo

m=m, D mpg

Part 2

Compare

Analyze

Complex

8

[Blum81-83]

(Equiv)

1. >
m
2. = B
ma
(Equiv)
3 >

m=m, D mg

Problem: Can’t ensure
~ Prob(l) in ideal vs.
real world. In step 3, P,-
Prob(l) before Simpg

RW may (pathologic-
ally) differ from P,-

Prob(l) after RW.

[Lin03], [PW09]

P P
my
(Ext&Equiv)
1. >
mpg
-
ma
(Ext&Equiv)
>

m=m,®D mpg

« Lin03: ZK-based
« PWO09: Cut&Choose based

Simulatable, but inefficient
for large |m|.

Legend: RW = rewind; Prob(L) = probability of abort.

B

Different constructions (high level)

Pp

P, This paper
T
(Equiv)
1 -
mu
(Ext)
2 >
mp
(Equiv)\
3. -
mu
| (Ext) \
4,

m=m, D mpg

Ext-Com and Equiv-Com are efficient

Different constructions (high level)

[Blum81-83] [Lin03], [PW09] p This paper p
A B
P, Ps P, Py mp
1IN my (quliV)
(Equiv) (Ext&Equiv) L =
1. > 1. > my
(Ext)
mpg mpg 2. >
(Equiv)\
ma mp 3. =
(Equiv) (Ext&Equiv) m
3. > 3. > | A \
(Ext)
4.
m=m, @D mpg m=m, ® mp m=m,®mp
. , « Lin03: ZK-based . .
EI'OM- (;an .t ensure | PW09: Cut&Choose based Ext-Com and Equiv-Com are efficient
~ Prob(l) in ideal vs.
real world. In step 3, Ps- | imulatable, but inefficient Simulatability: In the difficult side,
Part 2 E;;b(l) beforil ISH_nB for large |m|. Prob(L) by Py (step 3) may depend on
Compare ally) n(;?éer(p?rtor?l ogP1 C: Com(m,), but not on clear 7. Can be
Analyze Y A simulated in Expected-Poly # RWs.
Complex Prob(l) after RW.

Legend: RW = rewind; Prob(L) = probability of abort.

8

Closer look: possible instantiation and simulation (igh ievel)

Part 2

Compare

Analyze

Complex

9 Legend: Ped (Pedersen); ElgCom (ElGamal)

Closer look: possible instantiation and simulation (igh ievel)
Pa

mg
(Equiv)

M A
) (Ext)

mp
3 (Equiv)

-

Part 2 ‘ (Ext)

Compare - >

Analyze

Complex m = my ® mpg

9 Legend: Ped (Pedersen); ElgCom (ElGamal)

Closer look: possible instantiation and simulation (igh ievel)

Py Pub Params Pp
0. Setup ZKPoK(secret) w
- >
"B PedCom(hash(mg))
0 (Equiv) b
-
m, | ElgEnc(seed)
2. | (EXt) | pRG[seed] @ m 4
>
mpg mg
3. | (EQuiV) | pedOpen(hash)
-
Part 2 ‘ (Ext) ElgOpen(seed)
Compare - >
Analyze
Complex m=m, D mp

9 Legend: Ped (Pedersen); ElgCom (ElGamal)

Closer look: possible instantiation and simulation (igh ievel)

P
A Pub Params s Case malicious P,
0. Setup ZKPoK(secret) w
- >
"B PedCom(hash(mg))
0 (Equiv) b
-
m, | ElgEnc(seed)
2. | (EXt) | pRG[seed] @ m 4
O
g mg Simg
3. | (EqQuiv) | pedOpen(hash)
-
Part 2 ‘ (Ext) ElgOpen(seed)
Compare - >
Analyze
Complex m = m4 D mp

9 Legend: Ped (Pedersen); ElgCom (ElGamal)

Closer look: possible instantiation and simulation (igh ievel)
P
a Pub Params Pr Case malicious P,
0. Setup ZKPoK(secret) w .
- > - In step 0: Simg extract trapdoor
- In step 2: Simg extracts m, ,

PedCom(hash(mg)) « In step 3: Simg Equiv-opens mg =m @ m 4

mp
(Equiv)

m, | ElgEnc(seed)
2. | (EXt) | pRG[seed] @ m 4

@

Mp mp Simpg
3., (Equiv) | pedOpen(hash)
ma
Part 2 4. ‘ (Ext) | ElgOpen(seed)
Compare >
Analyze
Complex m = m4 D mp

9 Legend: Ped (Pedersen); ElgCom (ElGamal)

Closer look: possible instantiation and simulation (igh ievel)

Pa

mp
(Equiv)

m, | ElgEnc(seed)

2. | (EXt) | pRG[sced] @ m

2 !

Sim A mB_ mpg
3., (Equiv) | pedOpen(hash)
mu
Part 2 4. ‘ (Ext) | ElgOpen(seed)
Compare >
Analyze
Complex m = m4 D mp

9 Legend: Ped (Pedersen); ElgCom (ElGamal)

Pub Params
0. Setup ZKPoK(secret) w
- >

PedCom(hash(mg))

Case malicious P,

- In step 0: Simg extract trapdoor

- In step 2: Simg extracts m, ,

« In step 3: Simg Equiv-opens mpg =m @ my

Case malicious Pg

Closer look: possible instantiation and simulation (igh ievel)
Py Py

Pub Params Case malicious P,
0. Setup ZKPoK(secret) .
- > - In step 0: Simp extract trapdoor

- In step 2: Simg extracts m, ,

Em l]lsiV) PedCom(hash(mg)) * In step 3: Simg Equiv-opens mg=m ® my
1 q
= Case malicious Pg
my | ElgEnc(seed) Optimistic simulation:
7 (Ext) PRG[seed] ® m , « In step 2: Sim, commits random 71,
> - In step 3: Pg opens mpg, then Sim, rewinds
“@ - In step 2: Sim, commits m, =m @ myg
Sim, mpg mg - Instep 3: Pg opens mp
3. | (EqQuiv) | pedOpen(hash)
-
Part 2 ‘ (Ext) ElgOpen(seed)
Compare - >
Analyze
Complex m = m4 ® mp

9 Legend: Ped (Pedersen); ElgCom (ElGamal)

Closer look: possible instantiation and simulation (igh ievel)

Pa

mp
(Equiv)

m, | ElgEnc(seed)

2. | (EXt) | pRG[sced] @ m

2 !

Sim A mB_ mpg
3., (Equiv) | pedOpen(hash)
Part 2 ‘ (Ext) ElgOpen(seed)
Compare - >
Analyze
Complex m = m4 D mp

9 Legend: Ped (Pedersen); ElgCom (ElGamal)

Pub Params
0. Setup ZKPoK(secret) w
- >

PedCom(hash(mg))

Case malicious P,

- In step 0: Simg extract trapdoor
- In step 2: Simg extracts m, ,

« In step 3: Simg Equiv-opens mpg =m @ my

Case malicious Pg

Optimistic simulation:
- In step 2: Sim, commits random 71

- In step 3: Pg opens mpg, then Sim, rewinds
- In step 2: Sim, commits m, =m @ myg
- Instep 3: Pg opens mp

If Py aborts (1) first time in step 3:

Sim, emulates abort in ideal world.

Closer look: possible instantiation and simulation (igh ievel)

Pa

mp
(Equiv)

m, | ElgEnc(seed)

2. | (EXt) | pRG[sced] @ m

2 !

Sim A mB_ mpg
3., (Equiv) | pedOpen(hash)
Part 2 ‘ (Ext) ElgOpen(seed)
Compare - >
Analyze
Complex m = m4 D mp

9 Legend: Ped (Pedersen); ElgCom (ElGamal)

Pub Params
0. Setup ZKPoK(secret) w
- >

PedCom(hash(mg))

Case malicious P,

- In step 0: Simg extract trapdoor
- In step 2: Simg extracts m, ,

« In step 3: Simg Equiv-opens mpg =m @ my

Case malicious Pg

Optimistic simulation:
- In step 2: Sim, commits random 71

- In step 3: Pg opens mpg, then Sim, rewinds
- In step 2: Sim, commits m, =m @ myg
- Instep 3: Pg opens mp

If Py aborts (1) first time in step 3:
Sim, emulates abort in ideal world.

If Py NOT-1 1st time, but 1 2nd time:

Sim, estimates Prob(L) ([GK96])
Sim, tries till Pg opens or #RWs = p(k)/Prob(L)

Closer look: possible instantiation and simulation (igh ievel)

Pa

mp
(Equiv)

m, | ElgEnc(seed)

2. | (EXt) | pRG[sced] @ m

2 !

Sim A mB_ mpg
3., (Equiv) | pedOpen(hash)
Part 2 ‘ (Ext) ElgOpen(seed)
Compare - >
Analyze
Complex m = m4 D mp

9 Legend: Ped (Pedersen); ElgCom (ElGamal)

Pub Params
0. Setup ZKPoK(secret) w
- >

PedCom(hash(mg))

Case malicious P,

- In step 0: Simg extract trapdoor
- In step 2: Simg extracts m, ,

« In step 3: Simg Equiv-opens mpg =m @ my

Case malicious Pg

Optimistic simulation:
- In step 2: Sim, commits random 71

- In step 3: Pg opens mpg, then Sim, rewinds
- In step 2: Sim, commits m, =m @ myg
- Instep 3: Pg opens mp

If Py aborts (1) first time in step 3:
Sim, emulates abort in ideal world.

If Py NOT-1 1st time, but 1 2nd time:

Sim, estimates Prob(L) ([GK96])
Sim, tries till Pg opens or #RWs = p(k)/Prob(L)

Closer look: possible instantiation and simulation (igh ievel)
Py Py

Pub Params Case malicious P,
0. Setup ZKPoK(secret) .
- > - In step 0: Simp extract trapdoor

- In step 2: Simg extracts m, ,

1 (E’(;l l]lsiV) PedCom(hash(mg)) « In step 3: Simg Equiv-opens mpg =m @ my
= Case malicious Pg
ma ElgEnc(seed) Optimistic simulation:
) (Ext) PRG[seed] ® m , « In step 2: Sim, commits random 71,

> - In step 3: Pg opens mpg, then Sim, rewinds
“@ @ + Instep 2: Sim, commits m, =m @ mpg

Sim (EmB.) mg Simg In step 3: Pg opens mp
quiv
3 - | PedOpen(hash) If Py aborts (1) first time in step 3:
Sim, emulates abort in ideal world.
Part 2 ‘ (Ext) | ElgOpen(seed) If Pp NOT-1 1st time, but | 2nd time:
Compare > « Simy estimates Prob(L) ([GK96])
Analyze - Simy tries till Py opens or #RWs = p(k)/Prob(L)

Complex m = m4 ® mp

gend: itable pol ial of th. . t
9 Legend: Ped (Pedersen); ElgCom (ElGamal) Legend: p(k) (suitable polynomial of the sec. parameter)

Complexity

Part 2
Compare

Analyze

Complex|

10

Complexity

Fixed offset:
Setup (optional, e.g., to give trapdoor to simulator)
+ Ext-Com scheme: 1 Com/Open of short seed
« Equiv-Com scheme: 1 Com/Open of short hash

Part 2
Compare

Analyze

Complex|

10

Complexity

Fixed offset:
* Setup (optional, e.g., to give trapdoor to simulator)
+ Ext-Com scheme: 1 Com/Open of short seed
« Equiv-Com scheme: 1 Com/Open of short hash

(may be based on ZK or cut-and-choose, but only related to 1 or 2 short strings)

Part 2
Compare

Analyze

Complex|

10

Complexity

Fixed offset:

Setup (optional, e.g., to give trapdoor to simulator)
Ext-Com scheme: 1 Com/Open of short seed
Equiv-Com scheme: 1 Com/Open of short hash

(may be based on ZK or cut-and-choose, but only related to 1 or 2 short strings)

Amortized for long strings:

Communication: 2 bits per flipped coin

2. Computation (per party): 1 PRG, 1 CR-Hash, 1 XOR

Compare

Analyze

Complex|

10

Roadmap

1. Simulatable coin-flipping and commitments

2. Protocol #1: coin-flipping (simulatable with rewinding)

3. Protocol #2: UC Commitment Scheme

Part 3

Outline
Warmup
Improve
Complex

Rel W

11

4. Open questions / research directions

Part 3

Outline

Warmup
Improve

Complex
Rel W

12

Toward an efficient UC-Com scheme

Toward an efficient UC-Com scheme
How to get an Ext&Equiv-Com for LONG strings, with:

Communication expansion-rate 1+¢

A FEW Ext-coms for SHORT strings

A FEW Equiv-coms for SHORT strings
Symmetric crypto operations (PRG, CR-Hash)

Part 3
Outline

Warmup
Improve
Complex

Rel W

12

Toward an efficient UC-Com scheme
How to get an Ext&Equiv-Com for LONG strings, with:

Communication expansion-rate 1+¢

A FEW Ext-coms for SHORT strings > Ideal Ext-Com
A FEW Equiv-coms for SHORT strings » Ideal Equiv-Com
Symmetric crypto operations (PRG, CR-Hash) - 2% —/

UC-Coms do not

exist in plain model

Part 3
Outline

Warmup
Improve
Complex

Rel W

12

Toward an efficient UC-Com scheme
How to get an Ext&Equiv-Com for LONG strings, with:

Communication expansion-rate 1+¢

A FEW Ext-coms for SHORT strings > Ideal Ext-Com
A FEW Equiv-coms for SHORT strings » Ideal Equiv-Com
Symmetric crypto operations (PRG, CR-Hash) - 2% —/

. UC-Coms do not
(Other recent Rate-1 UC-Com schemes mentioned

ahead: [GIKW14, DDGN14, CDD+15, FINT16]) exist in plain model

Part 3
Outline

Warmup
Improve
Complex

Rel W

12

Toward an efficient UC-Com scheme
How to get an Ext&Equiv-Com for LONG strings, with:

Communication expansion-rate 1+¢

A FEW Ext-coms for SHORT strings > Ideal Ext-Com
A FEW Equiv-coms for SHORT strings » Ideal Equiv-Com
Symmetric crypto operations (PRG, CR-Hash) - 2% —/

. UC-Coms do not
(Other recent Rate-1 UC-Com schemes mentioned

ahead: [GIKW14, DDGN14, CDD+15, FINT16]) exist in plain model

Progress 1n two steps:

b 3 1. A comm. inefficient scheme, based on cut-and-choose
art

Outline 2. Improve comm. efficiency, with authenticators and an erasure-code
Warmup

Improve
Complex

Rel W

12

Toward an efficient UC-Com scheme
How to get an Ext&Equiv-Com for LONG strings, with:

Communication expansion-rate 1+¢

A FEW Ext-coms for SHORT strings > Ideal Ext-Com
A FEW Equiv-coms for SHORT strings » Ideal Equiv-Com
Symmetric crypto operations (PRG, CR-Hash) - 2% —/

. UC-Coms do not
(Other recent Rate-1 UC-Com schemes mentioned

ahead: [GIKW14, DDGN14, CDD+15, FINT16]) exist in plain model

Progress 1n two steps:

1. A comm. inefficient scheme, based on cut-and-choose

Part 3
Outline 2. Improve comm. efficiency, with authenticators and an erasure-code
Warmup
Improve . . Ext-Com PRG-expansion EqUiV-COIl’l
Pictorial X P
Complex CtO a seed of seed of seed (mask) hash of hash
Rel W notation: L =

® b Gjo @ Q]

12

Cut-and-choose warmup "

Part 3
Outline

armup

Improve
Complex

Rel W

13

Cut-and-choose warmup "

1. Commit phase

Part 3
Outline

armup

Improve
Complex

Rel W

13

(Warning;: Legend:
S = Sender; R = Receiver

Cut-and-choose warmup

heavy slide) :
n = # 1nstances;
1 . Commlt phase j = index of instance
Commit seeds and hashes) Forj e {1..... n}:
S i S—R
sced i Ext-Com —

@D : > |

PR&‘ mask |
* CR-Hash g3 | Eauiv-Com_ T

Part 3
Outline

armup

Improve
Complex

Rel W

13

(Warning;: Legend:
S = Sender; R = Receiver

Cut-and-choose warmup

heavy slide) :
n = # 1nstances;
1 . Commlt phase j = index of instance
Commit seeds and hashes) Forj e {1..... n}:
S i S—R
sced i Ext-Com —

@D : > |

PR&‘ mask |
* CR-Hash g3 | Eauiv-Com_ T

If S*, hash may differ from hash of PRG of seed

Part 3
Outline

armup

Improve
Complex

Rel W

13

(Warning;: Legend:
S = Sender; R = Receiver

Cut-and-choose warmup

heavy slide) :
n = # 1nstances;

1 . Commlt phase j = index of instance
Commit seeds and hashes) Forj e {1..... n}:

S i S—R
seed i

i Ext-Com [

@D : > |

PR&‘ mask |
* CR-Hash g3 | Eauiv-Com_ T

If S*, hash may differ from hash of PRG of seed

(Cut-and-Choose challenges) R — S:
{CHECK, EVAL} «-* Partitions[{1,..., n}]

Part 3
Outline

armup

Improve
Complex

Rel W

13

(Warning: Legend: .
S = Sender; R = Receiver

Cut-and-choose warmup

heavy slide) ,
n = # 1nstances;
1 . Commlt phase j = index of instance
(Commit seeds and hashes) Forj e {1.....n}: For j € CHECK:
S i S—R i S—R
seed i Ext:Com = | Open(<@)

> e
PR&‘ mask hash E E Open(ﬁ})
* CRo: s | Bauiv-Com (T, |

If S*, hash may differ from hash of PRG of seed

(Cut-and-Choose challenges) R — S:
{CHECK, EVAL} «* Partitions[{1,..., n}] |

Part 3
Outline

armup

Improve
Complex

Rel W

13

(Warning;: Legend:
S = Sender; R = Receiver

Cut-and-choose warmup

heavy slide) :
n = # 1nstances;
1 . COmmlt phase j = index of instance
Commit seeds and hashes) Forj e {1.....n}: For j € CHECK:
S E S—R E S—R i R

PR&‘ mask hash Open({;;}) CR-Hash(*) :?gz}
*C}{isll Q\} EquiV—Comb[]] |

If S*, hash may differ from hash of PRG of seed

Cut-and-Choose challenges) R — S:

{CHECK, EVAL} «* Partitions[{1,..., n}] |

Part 3
Outline

armup

Improve
Complex

Rel W

13

Part 3
Outline

armup

Improve
Complex

Rel W

13

Cut-and-choose warmup

1. Commit phase
(Commit seeds and hashes) Forj e {I.....n}: |

S i S—R E
seed t Ext-Com — '
- ' >

PR&\ mask hash

(Warning: Legend: |
heavy slide) S = Sender; R = Receiver
n = # instances;
j =1index of instance

For j € CHECK:
S—R ; R

Open(@>) ¢jp ~PRG[@]
Open(j2) CR-Hash(*) =?§?

* CR-Hash gz} Equiv-Com_ Tl (R believes majority EVAL instances are OK)

If S*, hash may differ from hash of PRG of seed

Cut-and-Choose challenges) R — S:

{CHECK, EVAL} «* Partitions[{1,..., n}] |

Legend:
S = Sender; R = Receiver

Cut-and-choose warmup (Ve

heavy slide) :
n = # 1nstances;
1 . COmmlt phase j = index of instance
Commit seeds and hashes) Forj e {1.....n}: For j € CHECK:
S E S—R i S—R i R
o e g | Opena@) | PP PRGI®

PR&‘ mask hash Op en({z}) I CR—Hash(*) :9&}

* CR-Hash gz} Equiv-Com_ Tl (R believes majority EVAL instances are OK)

If S*, hash may differ from hash of PRG of seed For i € EVAL:

i msg mask masking

(Cut-and-Choose challenges) R — S: = o *
{CHECK, EVAL} «* Partitions[{1,..., n}] | -

J
S—R

Part 3
Outline

armup

Improve
Complex

Rel W

13

(Warning: Legend: .
S = Sender; R = Receiver

Cut-and-choose warmup

heavy slide) :
n = # 1nstances;
1 . COmmlt phase j = index of instance
Commit seeds and hashes) Forj e {1.....n}: For j € CHECK:
S E S—R i S—R i R
o B s L Open(@) | PP “PRGI@]

PR&‘ mask Op en({i}) I CR—Hash(*) :9&}

hash : _ '
* CR-Hash {Z} EqulV—C0m>|: 7] (R believes majority EVAL instances are OK)

If S*, hash may differ from hash of PRG of seed | por 7 « pvAL. | EXiraction (Simg):
"““““““""“"““"““"“““"“"““""“"““““"--E msg mask masking - :EXt((:::l:::)

Cut-and-Choose challenges) R — S: =
o9 =i | 9 -PrG@®]
{CHECK, EVAL} «* Partitions[{1,...,n}] i ~

S S SR %‘*@j

Part 3 ==
Outline

armup

Improve

Complex

Rel W

13

Legend:
S = Sender; R = Receiver

Cut-and-choose warmup "¢

heavy slide) :
n = # 1nstances;
1 . COmmlt phase j = index of instance
Commit seeds and hashes) Forj e {1.....n}: For j € CHECK:
S E S—R i S—R i R
o B s L Open(@) | PP “PRGI@]

RO mask Open(37%) ECR—Hash(o) -’33

hash : _ '
* CR-Hash {Z} EqulV—C0m>|: 7] (R believes majority EVAL instances are OK)

If S*, hash may differ from hash of PRG of seed | por 7 « pvAL. | EXiraction (Simg):
msg mask masking @ =Ext(|>))
(Cut-and-Choose challenges) R — S: e~
okl | B o
{CHECK, EVAL} < Partitions[{1,..., n}] ! = -
N S S—R 5= _*@ j
Part 3 == =
Outline
2. Open phase
Improve
Complex
Rel W

13

Legend:
S = Sender; R = Receiver

Cut-and-choose warmup "¢

heavy slide) :
n = # 1nstances;
1 . COmmlt phase j = index of instance
Commit seeds and hashes) Forj e {1.....n}: For j € CHECK:
S E S—R i S—R i R
o B s L Open(@) | PP “PRGI@]

RO mask Open(37%) ECR—Hash(o) -’33

hash : _ '
* CR-Hash {Z} EqulV—C0m>|: 7] (R believes majority EVAL instances are OK)

If S*, hash may differ from hash of PRG of seed | por 7 « pvAL. | EXiraction (Simg):
-- msg mask masking P =Ext(|>))
(Cut-and-Choose challenges) R — S: e~
@Y= | 9 -rrci@®]
{CHECK, EVAL} < Partitions[{1,..., n}] ! = -
S S S—R % _* @ j
Part 3 == =
Outline
2. Open phase
Improve S—R:
Complex Open({lz}) :j € Eval
Rel W -~
Reveal =

13

Legend:
S = Sender; R = Receiver

Cut-and-choose warmup (Ve

heavy slide) :
n = # 1nstances;
1 . COmmlt phase j = index of instance
Commit seeds and hashes) Forj e {1.....n}: For j € CHECK:
S E S—R i S—R i R
o B s L Open(@) | PP “PRGI@]

PR&‘ mask Op en({i}) I CR—Hash(*) :9&}

hash : _ '
* CR-Hash {Z} EqulV—C0m>|: 7] (R believes majority EVAL instances are OK)

If S*, hash may differ from hash of PRG of seed | por 7 « pvAL. | EXiraction (Simg):
-- msg mask masking > =Ext([4>))
(Cut-and-Choose challenges) R — S: e~
@Y= | 9 -rrci@®]
{CHECK, EVAL} < Partitions[{1,..., n}] ! = -
N S S—R % _* @ ,]
Part 3 == =
2. Open phase

Improve S—R:

Complex Open({lz}) :j € Eval * ﬂ @ J

Rel W ~—

Reveal = R: CR—Hash(*) :?{2}
13 ’

(Warning: Legend: .
S = Sender; R = Receiver

Cut-and-choose warmup

heavy slide) :
n = # 1nstances;
1 . COmmlt phase j = index of instance
Commit seeds and hashes) Forj e {1.....n}: For j € CHECK:
S E S—R i S—R i R
o B s L Open(@) | PP “PRGI@]

PR&‘ mask Op en({i}) I CR—Hash(*) :9&}

hash : _ '
* CR-Hash {Z} EqulV—C0m>|: 7] (R believes majority EVAL instances are OK)

If S*, hash may differ from hash of PRG of seed For j € EVAL: Extraction (Simg):
-- msg mask masking P =Ext(|>))
(Cut-and-Choose challenges) R — S: e~
@Y= | 9 -rrci@®]
{CHECK, EVAL} < Partitions[{1,..., n}] ! = -
S S S—R 35’“ _* @ j
Part 3 == =
Outline 2 Open phase Equivocation by Simg:

Improve S—R:

Complex Open({lz}) :j € Eval R: * — % @ J

Rel W ~—

Reveal = R: CR—Hash(*) :?{’z}

13

Improving communication

Part 3
Outline
Warmup

|l mprove

Complex

Rel W

14

Legend:

Improving communication m = message; n = # instances;
e =#(EVAL); v = #(CHECK)

Problems with the warmup protocol

- Ensure correct extraction of message m implies many instances
- E.g. 40 bits statistical security = n > 123, e.g. (n, v, e) = (123, 74, 49).

- High communication complexity: |m| x e

Part 3
Outline
Warmup

|l mprove

Complex

Rel W

14

Legend:

Improving communication m = message; n = # instances;
e =#(EVAL); v = #(CHECK)

Problems with the warmup protocol

- Ensure correct extraction of message m implies many instances
- E.g. 40 bits statistical security = n > 123, e.g. (n, v, e) = (123, 74, 49).

- High communication complexity: |m| x e

Add two ingredients:

Part 3
Outline
Warmup

|l mprove

Complex

Rel W

14

Legend:

Improving communication m = message; n = # instances;
e =#(EVAL); v = #(CHECK)

Problems with the warmup protocol

- Ensure correct extraction of message m implies many instances
- E.g. 40 bits statistical security = n > 123, e.g. (n, v, e) = (123, 74, 49).

- High communication complexity: |m| x e

Add two ingredients:

« Authenticators: “authenticate” the message before masking it Q

Part 3
Outline
Warmup

|l mprove

Complex

Rel W

14

Legend:

Improving communication m = message; n = # instances;
e =#(EVAL); v = #(CHECK)

Problems with the warmup protocol

- Ensure correct extraction of message m implies many instances
- E.g. 40 bits statistical security = n > 123, e.g. (n, v, e) = (123, 74, 49).

- High communication complexity: |m| x e

Add two ingredients:

« Authenticators: “authenticate” the message before masking it Q

= Simy can verify each tentative extracted m for correctness

= 1 good Eval instance is enough = better params (n, v, e) = (41, >21, <20)

Part 3
Outline
Warmup

|l mprove

Complex

Rel W

14

0 o o Legend:
Improving communication m = message; n = # instances;
e =#(EVAL); v = #(CHECK)

Problems with the warmup protocol

- Ensure correct extraction of message m implies many instances
- E.g. 40 bits statistical security = n > 123, e.g. (n, v, e) = (123, 74, 49).

- High communication complexity: |m| x e

Add two ingredients:

« Authenticators: “authenticate” the message before masking it Q

= Simy can verify each tentative extracted m for correctness

= 1 good Eval instance is enough = better params (n, v, e) = (41, >21, <20)

Part 3
Outline Erasure-code: split message into smaller fragments (aka shares
P g g

Warmup

|l mprove

Complex

Rel W

14

0 o o Legend:
Improving communication m = message; n = # instances;
e =#(EVAL); v = #(CHECK)

Problems with the warmup protocol

- Ensure correct extraction of message m implies many instances
- E.g. 40 bits statistical security = n > 123, e.g. (n, v, e) = (123, 74, 49).

- High communication complexity: |m| x e

Add two ingredients:

« Authenticators: “authenticate” the message before masking it Q

= Simy can verify each tentative extracted m for correctness

= 1 good Eval instance is enough = better params (n, v, e) = (41, >21, <20)

Part 3
outine * Erasure-code: split message into smaller fragments (aka shares
P g g

Warmup —> Mask each (“authenticated”) share, instead of full message m
|Empr0ve

Complex = Simpg extracts m if it extracts enough (7) correct shares out of e shares
Rel W

14

— New params, e.g., (n, v, e, t) = (119, 73,46, 23) = Comm = |m| x e/t

Complexity

Part 3
Outline
Warmup

Improve

Complex

Rel W

15

Complexity

E.g. C&C and erasure code parameters:
- n =119 (# instances in cut-and-choose)

« v="73 (# committed seeds and hashes)
« e =46 (# shares = # Eval instances)

« t=23 (# good shares needed by Simulator)

Part 3
Outline
Warmup

Improve

Complex

Rel W

15

Part 3
Outline
Warmup

Improve

Complex

Rel W

15

Complexity

E.g. C&C and erasure code parameters:
- n =119 (# instances in cut-and-choose)
« v="73 (# committed seeds and hashes)

« e =46 (# shares = # Eval instances)

« t=23 (# good shares needed by Simulator)

Comm. and comp. rates:

« r=e/t=2 (comm. expansion-rate in
commit phase, with rate-1 erasure code)

Complexity

E.g. C&C and erasure code parameters: Comm. and comp. rates:

- n =119 (# instances in cut-and-choose) * r=e/t=2 (comm. expansion-rate in
commit phase, with rate-1 erasure code)

« r’=n/t=5.17 (length of overall PRG
output divided by message length)
« t=23 (# good shares needed by Simulator) (same in respect to CR-Hash input)

« v="73 (# committed seeds and hashes)

« e =46 (# shares = # Eval instances)

Part 3
Outline
Warmup

Improve

Complex

Rel W

15

Complexity

E.g. C&C and erasure code parameters: Comm. and comp. rates:

- n =119 (# instances in cut-and-choose) * r=e/t=2 (comm. expansion-rate in
commit phase, with rate-1 erasure code)

« r’=n/t=5.17 (length of overall PRG
output divided by message length)
« t=23 (# good shares needed by Simulator) (same in respect to CR-Hash input)

« v="73 (# committed seeds and hashes)

« e =46 (# shares = # Eval instances)

Some notes:

Part 3
Outline
Warmup

Improve

Complex

Rel W

15

Complexity

E.g. C&C and erasure code parameters: Comm. and comp. rates:
- n =119 (# instances in cut-and-choose) * r=e/t=2 (comm. expansion-rate in
commit phase, with rate-1 erasure code)

« r’=n/t=5.17 (length of overall PRG
output divided by message length)
« t=23 (# good shares needed by Simulator) (same in respect to CR-Hash input)

« v="73 (# committed seeds and hashes)

« e =46 (# shares = # Eval instances)

Some notes:

Can decrease rates » and 7’ closer to 1 (at the cost of larger erasure-code parameters)

Part 3
Outline
Warmup

Improve

Complex

Rel W

15

Complexity

E.g. C&C and erasure code parameters: Comm. and comp. rates:
- n =119 (# instances in cut-and-choose) * r=e/t=2 (comm. expansion-rate in
commit phase, with rate-1 erasure code)

« r’=n/t=5.17 (length of overall PRG
output divided by message length)
« t=23 (# good shares needed by Simulator) (same in respect to CR-Hash input)

« v="73 (# committed seeds and hashes)

« e =46 (# shares = # Eval instances)

Some notes:

Can decrease rates » and 7’ closer to 1 (at the cost of larger erasure-code parameters)

Sender and Receiver only need to encode; only simulator needs to decode

Part 3
Outline
Warmup

Improve

Complex

Rel W

15

Complexity

E.g. C&C and erasure code parameters: Comm. and comp. rates:
- n =119 (# instances in cut-and-choose) * r=e/t=2 (comm. expansion-rate in
. y="73 (# committed seeds and hashes) commit phase, with rate-1 erasure code)

_ _ : « r’=n/t=5.17 (length of overall PRG
* €= 46 (# shares =7 Eval instances) output divided by message length)

« t=23 (# good shares needed by Simulator) (same in respect to CR-Hash input)

Some notes:

Can decrease rates » and 7’ closer to 1 (at the cost of larger erasure-code parameters)
Sender and Receiver only need to encode; only simulator needs to decode

hashes (and # Equiv-Coms) can be reduced to 1, if allowing delayed verification

(Simpg can still extract, or detect non-ability of Sender to open)
Part 3

Outline
Warmup

Improve

Complex

Rel W

15

Complexity

E.g. C&C and erasure code parameters: Comm. and comp. rates:
- n =119 (# instances in cut-and-choose) * r=e/t=2 (comm. expansion-rate in

. y =73 (# committed seeds and hashes) commit phase, with rate-1 erasure code)

« r’=n/t=5.17 (length of overall PRG
output divided by message length)
« t=23 (# good shares needed by Simulator) (same in respect to CR-Hash input)

« e =46 (# shares = # Eval instances)

Some notes:

Can decrease rates » and 7’ closer to 1 (at the cost of larger erasure-code parameters)
Sender and Receiver only need to encode; only simulator needs to decode

hashes (and # Equiv-Coms) can be reduced to 1, if allowing delayed verification

(Simpg can still extract, or detect non-ability of Sender to open)
Part 3

outinve ° ldeal Equiv-Com and ideal Ext-Com can be instantiated in other setups, €.g. CRS
Warmup

Improve

Complex

Rel W

15

Complexity

E.g. C&C and erasure code parameters: Comm. and comp. rates:
- n =119 (# instances in cut-and-choose) * r=e/t=2 (comm. expansion-rate in
commit phase, with rate-1 erasure code)

« r’=n/t=5.17 (length of overall PRG

output divided by message length)
« t=23 (# good shares needed by Simulator) (same in respect to CR-Hash input)

« v="73 (# committed seeds and hashes)

« e =46 (# shares = # Eval instances)

Some notes:

Can decrease rates » and 7’ closer to 1 (at the cost of larger erasure-code parameters)
Sender and Receiver only need to encode; only simulator needs to decode

hashes (and # Equiv-Coms) can be reduced to 1, if allowing delayed verification

(Simpg can still extract, or detect non-ability of Sender to open)
Part 3

outinve ° ldeal Equiv-Com and ideal Ext-Com can be instantiated in other setups, €.g. CRS

W . .
armup Interaction due to cut-&-choose can be removed by using Non-Programmable
Improve
2 Random Oracle (and increasing statistical security parameter)
Complex
Rel W

15

Part 3
Outline
Warmup
Improve

Complex

Rel W

16

Some related work

Part 3
Outline
Warmup
Improve

Complex

Rel W

16

Some related work
Some UC-Com Schemes in 2011, 2013: [Linl1, FLM11, BCPV13]

Part 3
Outline
Warmup
Improve

Complex

Rel W

16

Some related work
Some UC-Com Schemes in 2011, 2013: [Linl1, FLM11, BCPV13]

- Comm: several group elements exchanged per committed short-string.

Part 3
Outline
Warmup
Improve

Complex

Rel W

16

Some related work
Some UC-Com Schemes in 2011, 2013: [Linl1, FLM11, BCPV13]

- Comm: several group elements exchanged per committed short-string.

- Comp: several exponentiations per committed short string.

Some related work
Some UC-Com Schemes in 2011, 2013: [Linl1, FLM11, BCPV13]

- Comm: several group elements exchanged per committed short-string.

- Comp: several exponentiations per committed short string.

- Some constructions achieve adaptive security.

Part 3
Outline
Warmup
Improve

Complex

Rel W

16

Some related work
Some UC-Com Schemes in 2011, 2013: [Linl1, FLM11, BCPV13]

- Comm: several group elements exchanged per committed short-string.

- Comp: several exponentiations per committed short string.

- Some constructions achieve adaptive security.

2014 onward — rate-1+¢ UC-Com schemes (static security)

Part 3
Outline
Warmup
Improve
Complex
Rel W

16

Some related work
Some UC-Com Schemes in 2011, 2013: [Linl1, FLM11, BCPV13]

- Comm: several group elements exchanged per committed short-string.

- Comp: several exponentiations per committed short string.

- Some constructions achieve adaptive security.

2014 onward — rate-1+¢ UC-Com schemes (static security)

« [GIKW14]:
- First proposal; uses 0-OT instead of C&C.

- Requires Error-correction code (ECC, for semantic errors), instead of erasure code.

Part 3
Outline
Warmup
Improve
Complex
Rel W

16

Some related work
Some UC-Com Schemes in 2011, 2013: [Linl1, FLM11, BCPV13]

- Comm: several group elements exchanged per committed short-string.

- Comp: several exponentiations per committed short string.

- Some constructions achieve adaptive security.

2014 onward — rate-1+¢ UC-Com schemes (static security)

« [GIKW14]:
- First proposal; uses 0-OT instead of C&C.

- Requires Error-correction code (ECC, for semantic errors), instead of erasure code.

- [DDGN14,CDD+15]
- Also OT and ECC based

Part 3 . .
s - Enable Homomorphic commitments.

Outline
Warmup
Improve

Complex

Rel W

16

Some related work
Some UC-Com Schemes in 2011, 2013: [Linl1, FLM11, BCPV13]

- Comm: several group elements exchanged per committed short-string.

- Comp: several exponentiations per committed short string.

- Some constructions achieve adaptive security.

2014 onward — rate-1+¢ UC-Com schemes (static security)

« [GIKW14]:
- First proposal; uses 0-OT instead of C&C.

- Requires Error-correction code (ECC, for semantic errors), instead of erasure code.

- [DDGN14,CDD+15]
- Also OT and ECC based

Fart 3 - Enable Homomorphic commitments.

Outline

Warmup . [FJNT16] (AISO OT based):

Improve - Uses consistency check to allow erasure code instead of ECC
Cl::;p;x - Enable homomorphic commitments.

16

Roadmap

1. Simulatable coin-flipping and commitments

2. Protocol #1: coin-flipping (simulatable with rewinding)

3. Protocol #2: UC Commitment Scheme

4. Open questions / research directions

Part 4

Open
Thanks
Refs

17

Possible research directions:

Part 4

Open

Thanks
Refs

18

Possible research directions:

e Formalize ideal Ext-but-not-Equiv and Equiv-but-not-Ext Com schemes
(initial attempt at full version of the paper)

Part 4

Open

Thanks
Refs

18

Possible research directions:

e Formalize ideal Ext-but-not-Equiv and Equiv-but-not-Ext Com schemes
(initial attempt at full version of the paper)

e Actual mstantiations / efficiency measurement (erasure code, ...) / tradeoffs
(communication vs. computation)

Part 4

Open

Thanks
Refs

18

Possible research directions:

e Formalize ideal Ext-but-not-Equiv and Equiv-but-not-Ext Com schemes
(initial attempt at full version of the paper)

e Actual mstantiations / efficiency measurement (erasure code, ...) / tradeoffs
(communication vs. computation)

e Efficient UC-Com schemes (rate-1, linear-time) in adaptive model?

Part 4

Open

Thanks
Refs

18

Possible research directions:

e Formalize ideal Ext-but-not-Equiv and Equiv-but-not-Ext Com schemes
(initial attempt at full version of the paper)

e Actual mstantiations / efficiency measurement (erasure code, ...) / tradeoffs
(communication vs. computation)

e Efficient UC-Com schemes (rate-1, linear-time) in adaptive model?

® Decrease erasure-code parameters needed for statistical security parameter?

Part 4

Open

Thanks
Refs

18

Possible research directions:

e Formalize ideal Ext-but-not-Equiv and Equiv-but-not-Ext Com schemes
(initial attempt at full version of the paper)

e Actual mstantiations / efficiency measurement (erasure code, ...) / tradeoffs
(communication vs. computation)

e Efficient UC-Com schemes (rate-1, linear-time) in adaptive model?
® Decrease erasure-code parameters needed for statistical security parameter?

® Homomorphic properties?

Part 4

Open

Thanks
Refs

18

Possible research directions:

e Formalize ideal Ext-but-not-Equiv and Equiv-but-not-Ext Com schemes
(initial attempt at full version of the paper)

e Actual mstantiations / efficiency measurement (erasure code, ...) / tradeoffs
(communication vs. computation)

e Efficient UC-Com schemes (rate-1, linear-time) in adaptive model?
® Decrease erasure-code parameters needed for statistical security parameter?
® Homomorphic properties?

e Selective opening of parts of message?
Part 4

Open

Thanks
Refs

18

Possible research directions:

e Formalize ideal Ext-but-not-Equiv and Equiv-but-not-Ext Com schemes
(initial attempt at full version of the paper)

e Actual mstantiations / efficiency measurement (erasure code, ...) / tradeoffs
(communication vs. computation)

e Efficient UC-Com schemes (rate-1, linear-time) in adaptive model?
® Decrease erasure-code parameters needed for statistical security parameter?
® Homomorphic properties?

e Selective opening of parts of message?
Part 4

Open | @ More efficient UC Coin-Flipping (2 bits / flipped coin & comp. efficient)?

Thanks
Refs

18

Thank you for your attention

Very Efficient Simulatable Flipping of Many Coins into-a-well

Part 4
Open luis.papers@gmail.com
Thanks https://1a.cr/2015/640

Refs

19

Thanks

Refs

20

References mentioned in this presentation

(More references in paper)

[Blu83]: Blum: Coin flipping by telephone — a protocol for solving impossible problems. SIGACT News 15, 23—
27 (1983). Appeared also at CRYPTO 1981

[Lin03]: Lindell. Parallel coin-tossing and constant-round secure two-party computation. Jr Cryptology, 16(3),
2003.

[PWO09]: Pass and Wee. Black-box constructions of two-party protocols from one-way functions. TCC 2009

[Lin11]: Lindell. Highly-efficient universally-composable commitments based on the DDH assumption.
EUROCRYPT 2011

[BCVP13]: Blazy and Chevalier and Pointcheval, and Vergnaud. Analysis and improvement of Lindell’s UC-
secure commitment schemes. ACNS 2013

[FLM11]: Fischlin and Libert and Manulis. Non-interactive and re-usable universally composable string
commitments with adaptive security. ASIACRYPT 2011

[GK96]: Goldreich and Kahan. How to construct constant-round zero-knowledge proof systems for NP. Jr
Cryptology, 9(3), 1996.

[GIKW14] Garay and Ishai and Kumaresan and Wee. On the complexity of UC commitments. EUROCRYPT
2014

[CDD+15]: Cascudo and Damgard and David and Giacomelli and Nielsen and Trifiletti. Additively homomorphic
UC commitments with optimal amortized overhead. PKC 2015

[DDGN14]: Damgérd and David and Giacomelli and Nielsen. Compact VSS and efficient homomorphic UC
commitments. ASTACRYPT 2014

[FINT16]: Frederiksen, Jakobsen, Nielsen, and Trifiletti. On the complexity of additively homomorphic UC
commitments. TCC 2016-A

References mentioned in this presentation
(More references in paper)

[Blu83]: Blum: Coin flipping by telephone — a protocol for solving impossible problems. SIGACT News 15, 23—
27 (1983). Appeared also at CRYPTO 1981

[Lin03]: Lindell. Parallel coin-tossing and constant-round secure two-party computation. Jr Cryptology, 16(3),
2003.

[PWO09]: Pass and Wee. Black-box constructions of two-party protocols from one-way functions. TCC 2009

[Lin11]: Lindell. Highly-efficient universally-composable commitments based on the DDH assumption.
EUROCRYPT 2011

[BCVP13]: Blazy and Chevalier and Pointcheval, and Vergnaud. Analysis and improvement of Lindell’s UC-
secure commitment schemes. ACNS 2013

[FLM11]: Fischlin and Libert and Manulis. Non-interactive and re-usable universally composable string
commitments with adaptive security. ASIACRYPT 2011

[GK96]: Goldreich and Kahan. How to construct constant-round zero-knowledge proof systems for NP. Jr
Cryptology, 9(3), 1996.

[GIKW14] Garay and Ishai and Kumaresan and Wee. On the complexity of UC commitments. EUROCRYPT
2014

[CDD+15]: Cascudo and Damgard and David and Giacomelli and Nielsen and Trifiletti. Additively homomorphic
UC commitments with optimal amortized overhead. PKC 2015

[DDGN14]: Damgérd and David and Giacomelli and Nielsen. Compact VSS and efficient homomorphic UC
commitments. ASTACRYPT 2014

[FINT16]: Frederiksen, Jakobsen, Nielsen, and Trifiletti. On the complexity of additively homomorphic UC
commitments. TCC 2016-A

Part 4

Open

Thanks The following images were obtained (or edited) from files in the public domain (downloaded at clker dot com):

Refs @@%&v@@?% Q

20

