Identity-Based Encryption	Cocks IBE Scheme	Algebraic Structure	Applications 000	Conclusion 00

Identity-Based Cryptosystems and Quadratic Residuosity

Marc Joye

Proxy: Fabrice Benhamouda

PKC 2016 · Tapei, Taiwan

Identity-Based Encryption ●○	Cocks IBE Scheme	Algebraic Structure	Applications 000	Conclusion 00
Identity-Based	Encryption			

An identity-based encryption scheme is a set of 4 algorithms

Setup

- Input: security parameter κ
- Output: master public/secret key mpk/msk

Identity-Based Encryption ●○	Cocks IBE Scheme	Algebraic Structure	Applications 000	Conclusion 00
Identity-Based	Encryption			

An identity-based encryption scheme is a set of 4 algorithms

- Setup
 - Input: security parameter κ
 - Output: master public/secret key *mpk/msk*
- 2 Encryption
 - Input: master public key mpk, identity id, message m
 - Output: $C = \mathscr{E}(mpk, id, m)$

Identity-Based Encryption ●○	Cocks IBE Scheme	Algebraic Structure	Applications 000	Conclusion 00
Identity-Based	Encryption			

An identity-based encryption scheme is a set of 4 algorithms

- Setup
 - Input: security parameter κ
 - Output: master public/secret key *mpk/msk*
- 2 Encryption
 - Input: master public key mpk, identity id, message m
 - Output: $C = \mathscr{E}(mpk, id, m)$
- Sey derivation
 - Input: identity id, master secret key msk
 - Output: user's private key usk

Identity-Based Encryption ●○	Cocks IBE Scheme	Algebraic Structure	Applications 000	Conclusion 00
Identity-Based	Encryption			

An identity-based encryption scheme is a set of 4 algorithms

- Setup
 - Input: security parameter κ
 - Output: master public/secret key mpk/msk
- 2 Encryption
 - Input: master public key mpk, identity id, message m
 - Output: $C = \mathscr{E}(mpk, id, m)$
- Sey derivation
 - Input: identity id, master secret key msk
 - Output: user's private key usk
- Oecryption
 - Input: decryption key usk, ciphertext C
 - Output: $m = \mathscr{D}(usk, C)$

Identity-Based Encryption ○●	Cocks IBE Scheme	Algebraic Structure	Applications 000	Conclusion 00
This Talk				

- Study of Cocks IBE scheme
 - Clifford Cocks (mathematician, GCHQ)

Our Main Contribution

Discovery of the algebraic structure underlying Cocks encryption

- better understanding of its properties and its security
- new applications

Identity-Based Encryption	Cocks IBE Scheme	Algebraic Structure	Applications 000	Conclusion 00
Outline				

1 Cocks IBE Scheme

2 Algebraic Structure

3 Applications

Identity-Based Encryption	Cocks IBE Scheme	Algebraic Structure	Applications 000	Conclusion 00
Preliminaries				

$$\left(\frac{a}{p}\right) = \begin{cases} 0 & \text{if } a \equiv 0 \mod p \\ 1 & \text{if } a \text{ is a square } (a = b^2 \mod p) \\ -1 & \text{else} \end{cases}$$

Identity-Based Encryption	Cocks IBE Scheme •00	Algebraic Structure	Applications 000	Conclusion 00
Preliminaries				

$$\left(\frac{a}{p}\right) = \begin{cases} 0 & \text{if } a \equiv 0 \mod p \\ 1 & \text{if } a \text{ is a square } (a = b^2 \mod p) \\ -1 & \text{else} \end{cases}$$

If N = pq RSA modulus, $a \in \mathbb{Z}_N$, Jacobi symbol:

$$\left(\frac{a}{N}\right) = \left(\frac{a}{p}\right) \cdot \left(\frac{a}{q}\right)$$

(efficiently computable)

Identity-Based Encryption	Cocks IBE Scheme ●00	Algebraic Structure	Applications 000	Conclusion 00
Preliminaries				

$$\left(\frac{a}{p}\right) = \begin{cases} 0 & \text{if } a \equiv 0 \mod p \\ 1 & \text{if } a \text{ is a square } (a = b^2 \mod p) \\ -1 & \text{else} \end{cases}$$

If N = pq RSA modulus, $a \in \mathbb{Z}_N$, Jacobi symbol:

$$\left(\frac{a}{N}\right) = \left(\frac{a}{p}\right) \cdot \left(\frac{a}{q}\right)$$

(efficiently computable)

a is a square mod
$$N \iff \left(\frac{a}{p}\right) = \left(\frac{a}{q}\right) = 1$$

Identity-Based Encryption	Cocks IBE Scheme ●00	Algebraic Structure	Applications 000	Conclusion 00
Preliminaries				

$$\left(\frac{a}{p}\right) = \begin{cases} 0 & \text{if } a \equiv 0 \mod p \\ 1 & \text{if } a \text{ is a square } (a = b^2 \mod p) \\ -1 & \text{else} \end{cases}$$

If N = pq RSA modulus, $a \in \mathbb{Z}_N$, Jacobi symbol:

$$\left(\frac{a}{N}\right) = \left(\frac{a}{p}\right) \cdot \left(\frac{a}{q}\right)$$

(efficiently computable)

a is a square mod
$$N \iff \left(\frac{a}{p}\right) = \left(\frac{a}{q}\right) = 1 \implies \left(\frac{a}{N}\right) = 1$$

Identity-Based Encryption	Cocks IBE Scheme ○●○	Algebraic Structure	Applications 000	Conclusion 00
Cocks Cryptos	system			

- First pairing-free IBE scheme (2001)
 - works in standard RSA groups
 - semantically secure under QR assumption (in the ROM)

Quadratic Residuosity Assumption

Let N = pq be an RSA-type modulus. The distributions of

$$\mathbb{J}_N = \left\{ a \in \mathbb{Z}_N^{\times} \mid \left(\frac{a}{N} \right) = 1 \right\} \text{ and } \mathbb{Q}\mathbb{R}_N = \left\{ a \in \mathbb{Z}_N^{\times} \mid \left(\frac{a}{p} \right) = \left(\frac{a}{q} \right) = 1 \right\}$$

are indistinguishable

Identity-Based Encryption	Cocks IBE Scheme 00●	Algebraic Structure	Applications 000	Conclusion 00
Cocks Cryptosystem (cont'd)				

Setup
$$mpk = \{N, u, \mathcal{H}\}, msk = \{p, q\}$$
 where:
• $N = pq$ an RSA modulus
• $u \in \mathbb{J}_N \setminus \mathbb{QR}_N$
• $\mathcal{H}: \{0, 1\}^* \to \mathbb{J}_N$ hash function (RO)

Key derivation compute $D_{id} = \mathcal{H}(id)$ and returns

$$\mathit{usk} = \delta_{\mathit{id}} = egin{cases} (D_{\mathit{id}})^{1/2} & ext{if } D_{\mathit{id}} \in \mathbb{QR}_{\mathcal{N}} \ (\mathit{uD}_{\mathit{id}})^{1/2} & ext{if } D_{\mathit{id}} \in \mathbb{J}_{\mathcal{N}} \setminus \mathbb{QR}_{\mathcal{N}} \end{cases}$$

<u>Remark</u>: Original cryptosystem defined with $p, q \equiv 3 \pmod{4}$ and u = -1

Identity-Based Encryption	Cocks IBE Scheme 00●	Algebraic Structure	Applications 000	Conclusion 00
Cocks Cryptosystem (cont'd)				

Setup
$$mpk = \{N, u, \mathcal{H}\}, msk = \{p, q\}$$
 where:
• $N = pq$ an RSA modulus
• $u \in \mathbb{J}_N \setminus \mathbb{Q}\mathbb{R}_N$
• $\mathcal{H}: \{0, 1\}^* \to \mathbb{J}_N$ hash function (RO)

Key derivation compute $D_{id} = \mathcal{H}(id)$ and returns

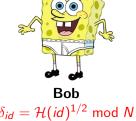
$$usk = \delta_{id} = \begin{cases} (D_{id})^{1/2} & \text{if } D_{id} \in \mathbb{Q}\mathbb{R}_N\\ (uD_{id})^{1/2} & \text{if } D_{id} \in \mathbb{J}_N \setminus \mathbb{Q}\mathbb{R}_N \end{cases}$$

<u>Remark:</u> Original cryptosystem defined with $p, q \equiv 3 \pmod{4}$ and u = -1

 Identity-Based Encryption
 Cocks IBE Scheme
 Algebraic Structure
 Applications
 Conclusion

 Cocks Cryptosystem (cont'd)

mpk



Alice Bob
message
$$m \in \{-1, 1\}$$

 $t \in_R \mathbb{Z}_N$ s.t.
 $\left(\frac{t}{N}\right) = m$
 $c = t + \frac{\mathcal{H}(id)}{t} \mod N$ $\xrightarrow{C=(c)} \gamma = c$
 $m = \left(\frac{\gamma + 2\delta_{id}}{N}\right)$

Cocks IBE Scheme Algebraic Structure 000 Cocks Cryptosystem (cont'd) mpk Alice Bob $\delta_{id} = \mathcal{H}(id)^{1/2} \bmod N$ message $m \in \{-1, 1\}$ or $\delta_{id} = (u\mathcal{H}(id))^{1/2} \mod N$ $t, \overline{t} \in_{R} \mathbb{Z}_{N}$ s.t. $\left(\frac{t}{N}\right) = \left(\frac{\bar{t}}{N}\right) = m$

 $c = t + \frac{\mathcal{H}(id)}{t} \mod N \qquad \xrightarrow{C = (c,\bar{c})} \\ \bar{c} = \bar{t} + \frac{u\mathcal{H}(id)}{\bar{t}} \mod N$

 $\gamma = c \text{ or } \bar{c}$

Identity-Based Encryption	Cocks IBE Scheme	Algebraic Structure	Applications 000	Conclusion 00
Outline				

1 Cocks IBE Scheme

- 2 Algebraic Structure
- 3 Applications

4 Conclusion

Identity-Based Encryption	Cocks IBE Scheme	Algebraic Structure •0000	Applications 000	Conclusion 00
Pell Curve				

• Consider the Pell curve given by the Pell equation

$$x^2 - \Delta y^2 = 1$$

over
$$\mathbb{F}_{m{
ho}}$$
, where $\Delta=\delta^2\in\mathbb{F}_{m{
ho}}^{ imes}$

Identity-Based Encryption	Cocks IBE Scheme	Algebraic Structure ●0000	Applications 000	Conclusion 00
Pell Curve				

• Consider the Pell curve given by the Pell equation

$$x^2 - \Delta y^2 = 1$$

over \mathbb{F}_p , where $\Delta = \delta^2 \in \mathbb{F}_p^{ imes}$

- Set of points (x, y) on the Pell curve
 - forms a group $\mathscr{C}(\mathbb{F}_p)$
 - order p-1
 - neutral element: $\mathcal{O} = (0, 1)$

Identity-Based Encryption	Cocks IBE Scheme	Algebraic Structure	Applications 000	Conclusion 00
Pell Curve				

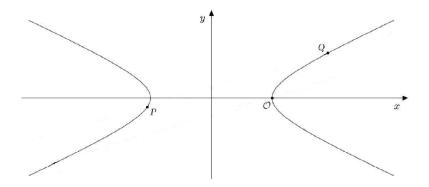
• Consider the Pell curve given by the Pell equation

$$x^2 - \Delta y^2 = 1$$

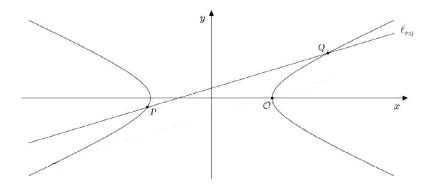
over \mathbb{F}_p , where $\Delta = \delta^2 \in \mathbb{F}_p^{ imes}$

- Set of points (*x*, *y*) on the Pell curve
 - forms a group $\mathscr{C}(\mathbb{F}_p) \cong \mathbb{F}_p^{\times}$
 - order p-1
 - neutral element: $\mathcal{O} = (0, 1)$

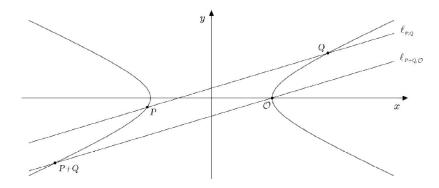
Identity-Based Encryption	Cocks IBE Scheme	Algebraic Structure	Applications 000	Conclusion 00
Group Law				



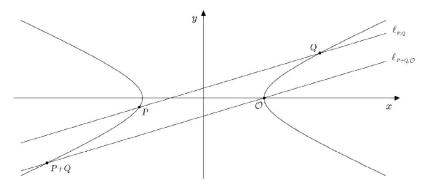
Identity-Based Encryption	Cocks IBE Scheme	Algebraic Structure	Applications 000	Conclusion 00
Group Law				



Identity-Based Encryption	Cocks IBE Scheme	Algebraic Structure	Applications 000	Conclusion 00
Group Law				

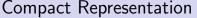


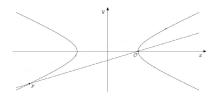
Identity-Based Encryption	Cocks IBE Scheme	Algebraic Structure	Applications 000	Conclusion 00
Group Law				



• Algebraically: $(x_1, y_1) \oplus (x_2, y_2) = (x_1x_2 + \Delta y_1y_2, x_1y_2 + x_2y_1)$

Identity-Based Encryption	Cocks IBE Scheme	Algebraic Structure	Applications 000	Conclusion 00
Compact Danka	antation			





• Slope

- line through **P** and \mathcal{O} : y = s(x-1)
- for efficiency, let $t := \Delta s = \frac{\Delta y}{x-1}$

$$\psi: \mathbb{F}_{p} \cup \{\infty\} \to \mathscr{C}(\mathbb{F}_{p}), \begin{cases} t \mapsto \boldsymbol{P} = \left(\frac{t^{2} + \Delta}{t^{2} - \Delta}, \frac{2t}{t^{2} - \Delta}\right) \\ \infty \mapsto \mathcal{O} \end{cases}$$

<u>Remark:</u> ψ not defined at $\pm \delta$ when $\Delta \in \mathbb{QR}_p$

Identity-Based Encryption	Cocks IBE Scheme	Algebraic Structure	Applications 000	Conclusion 00
The Group $\mathcal{Z}_{N,\Delta}$				

- We recall that $\Delta = \delta^2 \in \mathbb{QR}_p$
- Define the group $(\mathcal{F}_{\rho,\Delta},\circledast)$ with neutral element ∞ , where

$$\mathcal{F}_{\boldsymbol{p},\boldsymbol{\Delta}} = (\mathbb{F}_{\boldsymbol{p}} \setminus \{\pm\delta\}) \cup \{\infty\}$$
$$= \{\psi^{-1}(\boldsymbol{P}) \mid \boldsymbol{P} \in \mathscr{C}(\mathbb{F}_{\boldsymbol{p}})\}$$
$$= \{t \in \mathbb{F}_{\boldsymbol{p}} \mid t^{2} \neq \boldsymbol{\Delta}\} \cup \{\infty\}$$

under the law
$$\circledast$$
: $t_1 \circledast t_2 = rac{t_1 t_2 + \Delta}{t_1 + t_2}$

Identity-Based Encryption	Cocks IBE Scheme	Algebraic Structure	Applications 000	Conclusion 00
The Group $\mathcal{Z}_{N,}$	Δ			

- We recall that $\Delta = \delta^2 \in \mathbb{QR}_p$
- Define the group $(\mathcal{F}_{\rho,\Delta},\circledast)$ with neutral element ∞ , where

$$\begin{split} \mathcal{F}_{\boldsymbol{p},\boldsymbol{\Delta}} &= (\mathbb{F}_{\boldsymbol{p}} \setminus \{\pm \delta\}) \cup \{\infty\} \\ &= \{\psi^{-1}(\boldsymbol{P}) \mid \boldsymbol{P} \in \mathscr{C}(\mathbb{F}_{\boldsymbol{p}})\} \\ &= \{t \in \mathbb{F}_{\boldsymbol{p}} \mid t^2 \neq \boldsymbol{\Delta}\} \cup \{\infty\} \cong \mathbb{F}_{\boldsymbol{p}}^{\times} \end{split}$$
under the law \circledast : $t_1 \circledast t_2 = \frac{t_1 t_2 + \boldsymbol{\Delta}}{t_1 + t_2}$

Identity-Based Encryption	Cocks IBE Scheme	Algebraic Structure	Applications 000	Conclusion 00
The Group $\mathcal{Z}_{N,}$	Δ			

- We recall that $\Delta = \delta^2 \in \mathbb{QR}_p$
- Define the group $(\mathcal{F}_{\rho,\Delta},\circledast)$ with neutral element ∞ , where

$$\begin{aligned} \mathcal{F}_{\boldsymbol{\rho},\Delta} &= (\mathbb{F}_{\boldsymbol{\rho}} \setminus \{\pm\delta\}) \cup \{\infty\} \\ &= \{\psi^{-1}(\boldsymbol{P}) \mid \boldsymbol{P} \in \mathscr{C}(\mathbb{F}_{\boldsymbol{\rho}})\} \\ &= \{t \in \mathbb{F}_{\boldsymbol{\rho}} \mid t^2 \neq \Delta\} \cup \{\infty\} \cong \mathbb{F}_{\boldsymbol{\rho}}^{\times} \end{aligned}$$

under the law \circledast : $t_1 \circledast t_2 = \frac{t_1 t_2 + \Delta}{t_1 + t_2}$

• By Chinese remaindering, for N = pq, consider

$$\mathcal{Z}_{N,\Delta} := \mathcal{F}_{p,\Delta} imes \mathcal{F}_{q,\Delta} \cong \mathbb{Z}_N^{ imes}$$

Main Observation

(Up to a factor of 2) Cocks ciphertexts are squares in
$$\mathcal{Z}_{N,\Delta}$$
, where $\Delta = \mathcal{H}(id) \in \mathbb{QR}_N$ [or $\Delta = u\mathcal{H}(id) \in \mathbb{QR}_N$

•
$$t_1 \circledast t_2 = \frac{t_1 t_2 + \Delta}{t_1 + t_2}$$

 $\implies t \circledast t = \frac{t^2 + \mathcal{H}(id)}{2t} = \frac{1}{2} \cdot \left(t + \frac{\mathcal{H}(id)}{t}\right) = \frac{c}{2}$
and likewise, $\overline{t} \circledast \overline{t} = \frac{\overline{t}^2 + u\mathcal{H}(id)}{2\overline{t}} = \frac{1}{2} \cdot \left(\overline{t} + \frac{u\mathcal{H}(id)}{\overline{t}}\right) = \frac{\overline{c}}{2}$

1

Identity-Based Encryption	Cocks IBE Scheme	Algebraic Structure	Applications	Conclusion 00
Outline				

1 Cocks IBE Scheme

2 Algebraic Structure

4 Conclusion

Identity-Based Encryption	Cocks IBE Scheme	Algebraic Structure	Applications •00	Conclusion 00

Re-Randomizing Cocks Ciphertexts

For simplicity, we suppose $\mathcal{H}(\mathit{id}) \in \mathbb{QR}_N \implies \Delta = \mathcal{H}(\mathit{id})$

- Let message $m = (-1)^b \in \{\pm 1\}$
- Corresponding ciphertext is $c = t + \frac{\Delta}{t}$ with $\left(\frac{t}{N}\right) = m$
- Choosing a random t' and computing $c' = t' + \frac{\Delta}{t'}$, we have

$$\frac{c^*}{2} := \frac{c}{2} \circledast \frac{c'}{2} \equiv \frac{c}{2} \iff \left(\frac{c+c'}{N}\right) = 1$$

 $\implies t'$ should be chosen s.t. $\left(\frac{c+c'}{N}\right) = 1$ to get a ciphertext c^* equivalent to c

~ .·				
dentity-Based Encryption ၁୦	Cocks IBE Scheme	Algebraic Structure	Applications 000	Conclusion 00

Computing over Cocks Ciphertexts

For simplicity, we suppose
$$\mathcal{H}(\mathit{id}) \in \mathbb{QR}_{N} \implies \Delta = \mathcal{H}(\mathit{id})$$

- Let messages $m_1=(-1)^{b_1}$ and $m_2=(-1)^{b_2}\in\{\pm 1\}$
- Define message $m_3:=m_1\cdot m_2=(-1)^{b_1\oplus b_2}$
- Corresponding ciphertexts are denoted c_1 , c_2 , and c_3
- Then

$$\frac{c'_3}{2} := \frac{c_1}{2} \circledast \frac{c_2}{2} \equiv \frac{c_3}{2} \iff \left(\frac{c_1 + c_2}{N}\right) = 1$$

If necessary, re-randomize e.g. c_1 until above condition is met

(00	(000		00000	000	00
	dentity-Based E		Cocks IBE Sche	eme	Algebraic Structure	Applications	Conclusion

Computing over Cocks Ciphertexts

Cocks cryptosystem is homomorphic

- w.r.t. multiplication for messages in $\{\pm 1\}$
- \bullet w.r.t. \oplus for messages in $\{0,1\}$

Identity-Based Encryption	Cocks IBE Scheme	Algebraic Structure	Applications	Conclusion 00
		•		

Making Cocks Ciphertexts Anonymous

- Galbraith: Cocks ciphertext are not anonymous
- With our notation

Proposition

Let $w \in \mathcal{Z}_{N,\Delta}$. If

$$\left(\frac{w^2 - \Delta}{N}\right) = -1$$

then w is not a square in $\mathcal{Z}_{N,\Delta}$

$$\implies$$
 If a ciphertext c satisfies $\left(\frac{(c/2)^2 - \mathcal{H}(id)}{N}\right) = -1$ then it is not for user with identity *id*

		\		
Identity-Based Encryption	Cocks IBE Scheme	Algebraic Structure	Applications	Conclusion 00

Making Cocks Ciphertexts Anonymous

 \circledast -multiply with probability 1/2 the value of $\frac{c}{2}$ with an element $\frac{d}{2}$ satisfying $\left(\frac{(d/2)^2 - \Delta}{N}\right) = -1$

- At decryption time, legitimate recipient can \circledast -divide by $\frac{d}{2}$ in case ciphertext were \circledast -multiplied by $\frac{d}{2}$
- Application: Public-key encryption with keyword search (PEKS)

Identity-Based Encryption	Cocks IBE Scheme	Algebraic Structure	Applications 000	Conclusion
Outline				

1 Cocks IBE Scheme

2 Algebraic Structure

3 Applications

Identity-Based Encryption	Cocks IBE Scheme	Algebraic Structure	Applications 000	Conclusion •0
Summary				

- Description of algebraic structure underlying Cocks encryption
- Better understanding of Cocks cryptosystem
- Applications:
 - homomorphic computations
 - anonymous encryption
- (More results in the paper)

Cocks cryptosystem is homomorphic

Identity-Based Encryption

Cocks IBE Scheme

Algebraic Structure

Applications 000

Conclusion 0

Comments/Questions?

http://joye.site88.net/