

PKC 2016

SC.

Identity-based Hierarchical Key-insulated Encryption without Random Oracles

<u>Yohei Watanabe^{1,3}</u> Junji Shikata^{1,2}

1 Graduate School of Environment and Information Sciences, YNU, Japan

2 Institute of Advanced Sciences, YNU, Japan f(x) = g3, ITRI, AIST, Japan

YNU

Key Insulation [DKXY02]

One of solutions to key exposure problem

Hierarchical Key Insulation [HHS105]

Identity-based Hierarchical YNU Key-insulated Encryption [ннsi05]

Abbreviated to ``hierarchical IKE"

Identity-based encryption (IBE) with hierarchical key insulation
 NOT hierarchical IBE (HIBE) with key insulation

Intuition:

First proposed by Hanaoka et al. at ASIACRYPT 2005 [ннsю5]

In the random oracle model (ROM)

However, NO known hierarchical IKE schemes w/o ROM !

Our Contribution

We propose an ℓ -level hierarchical IKE scheme that achieves:

(1) Strong security in the standard model from simple assumptions

- Using asymmetric pairing
- From Symmetric eXternal Diffie-Hellman (SXDH) assumption
 - Based on Jutla-Roy HIBE [JR13] and its variant [RS14]

(2) Space efficiency (any parameters do not depend on ID-space sizes)

- Constant-size parameters when the hierarchy is one (i.e. $\ell = 1$)
 - Public parameters of the existing scheme [WLC+08] depend on ID-space sizes due to the underlying Waters IBE [wat05]

Why is achieving (1) and (2) challenging? (more on this later)

- Hierarchical IKE from any HIBE does not satisfy strong security
- Proof technique of Waters dual-system IBE [Wat09] does not work well

Type-3 Pairing and SXDH Assumption

Type-3 Pairing (asymmetric pairing)

- $\checkmark e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$
- \checkmark No efficiently computable isomorphisms between \mathbb{G}_1 and \mathbb{G}_2 are known

SXDH Assumption [BBS04]

- ✓ Decisional Diffie–Hellman (DDH) assumptions hold in $𝔅multical{G}_1$ and $𝔅multical{G}_2$, respectively
- ✓ Advantage of A in the DDH*i* game (*i* ∈ {1, 2}) is defined by:

$$Adv(\lambda) \coloneqq Pr\left[b' = b \left| \begin{array}{l} D \coloneqq (p, \mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T, g_1, g_2, e) \leftarrow \mathcal{G} \\ c_1, c_2 \leftarrow \mathbb{Z}_p, b \leftarrow \{0, 1\} \\ \text{if } b = 0 \text{ then } T \coloneqq g_i^{c_1c_2} \text{ else } T \leftarrow \mathbb{G}_i \\ b' \leftarrow \mathcal{A}(D, g_i^{c_1}, g_i^{c_2}, T) \end{array} \right].$$

Time-period Map Function [HHS105]

YNU

 \checkmark Functions for "several kinds of time-periods" $\mathcal{T}_0, ..., \mathcal{T}_{\ell-1}$ Example: $\ell = 4$, time = 9:59 / 7th / Oct. / 2015 $T_0(time) = t_0^{(19)} = 1st - 15th / Oct. / 2015,$ $T_1(time) = t_1^{(10)} = \text{Oct. / 2015},$ $T_2(time) = t_2^{(5)} =$ Set. - Oct. / 2015, $T_3(time) = t_3^{(2)} = Jul. - Dec. / 2015$ Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. $t_{3}^{(2)}$ $t_{3}^{(1)}$

Hierarchical IKE: Model

Hierarchical IKE: Security

IND-KE-CPA security:

Why Hierarchical IKE from HIBE is Insufficient

If secret key for I is leaked, all other secret keys can be generated the resulting scheme does not meet *strong* security does not meet IND-KE-CPA security !

Why Waters' Technique Does Not Work

Waters dual system IBE [Wat09]

 \succ Ciphertext *ct* contains *tag_c* and secret key *sk_I* contains *tag_K*

Important proof technique:

Some pairwise independent function is embedded into the public parameter for cancelling values

 \blacktriangleright It raises $tag_{c} = tag_{K}$ for the same identity I

However, the proof works well since it is enough to generate

- > Only tag_K for all identities $\mathbf{I} \neq \mathbf{I}^*$
- > Only tag_c for the target identity I^*

On the other hand, in (hierarchical) IKE,

 \mathcal{A} can get secret keys for \mathbf{I}^* (i.e. tag_K) as well as for $\mathbf{I} \neq \mathbf{I}^*$

Waters' technique cannot seem to be applied !

、レノ

Why Jutla-Roy HIBE?

We can avoid such a collision problem!

 $\checkmark sk_I$ does not contain any tag, though *ct* contains *tag*

Jutla–Roy HIBE [JR13] and its variant [RS14]

- Constant-size IBE (when $\ell = 1$)
- IND-ID-CPA security under the SXDH assumption
- Constant-size lowest-level key unlike [wat09,Lw11]

It leads to constant-size decryption key

- Remark

There might be other constant-size IBE schemes that can avoid the collision problem

YNU

Basic Idea of Our Construction

Specific $(\ell + 1)$ -level HIBE ($(\ell + 1)$ -level Jutla–Roy HIBE) +

 (ℓ, ℓ) -secret sharing: secret *B* and shares β_i $(0 \le i \le \ell - 1)$ s.t. $B = \sum_{i=0}^{\ell-1} \beta_i$

All β_i are needed to generate correct decryption key $(D_1, D'_1, D_2, D'_2, D_3)$ Adversary cannot generate decryption key for I* at time* ! 13

YNU

Encryption and Decryption Procedure

Enc(mpk, I, time, M): $mpk \coloneqq (z, g_1, g_1^{\alpha}, \{u_{1,j}\}_{j=0}^{\ell}, w_1, h_1, ...)$ Choose $s, tag \leftarrow \mathbb{Z}_p$. Compute $C_0 \coloneqq Mz^s, C_1 \coloneqq g_1^s, C_2 \coloneqq (g_1^{\alpha})^s, C_3 \coloneqq \left(\prod_{i=0}^{\ell-1} \left(u_{1,j}^{t_j}\right) u_{1,\ell}^{I} w_1^{tag} h_1\right),$ where $t_j \coloneqq T_j(\texttt{time}) \ (0 \le j \le \ell - 1)$. Output $C \coloneqq (C_0, C_1, C_2, C_3, tag)$. $-Dec(dk_{I,t_0}, \langle C, \texttt{time} \rangle): dk_{I,t_0} \coloneqq (R_0, D_1, D'_1, D_2, D'_2, D_3)$ $M = \frac{C_0 \cdot e(C_3, D_3)}{e(C_1, D_1^{tag} D_1') e(C_2, D_2^{tag} D_2')}.$

Parameter Evaluation and Comparison

# pp	#dk	#hk _i	# C	Enc. cost	Dec. cost
$(3\ell + 13) \mathbb{G} $	6 G	$(2i+6) \mathbb{G} $	$4 \mathbb{G} + \mathbb{Z}_p $	$[0,0,\ell+4,1]$	[3,0,2,0]

 $|\mathbb{G}|$: bit-length of a group element in \mathbb{G}_1 , \mathbb{G}_2 , or \mathbb{G}_T

 $|\mathbb{Z}_p|$: bit-length of an element in \mathbb{Z}_p

#pp, #dk, #hk_i, #C: sizes of public parameter, dec. key, *i*-th helper key, and ciphertext
[*,*,*,*]: [pairing, multi-exp., regular-exp., fix-based-exp.]

	# pp	#dk	# hk	# C	Enc. cost	Dec. cost	Assumption
HHSI05 $(\ell = 1)$	2 G	3 G	G	4 G + r	[1,0,2,1]	[4,0,2,1]	CBDH (in ROM)
WLC+08 (threshold $t = 1$)	$(2n+5) \mathbb{G} $	4 G	2 G	4 G	[0,1,2,1]	[3,0,0,0]	DBDH
Our scheme $(\ell = 1)$	16 G	6 G	7 G	$4 \mathbb{G} + \mathbb{Z}_p $	[0,0,5,1]	[3,0,2,0]	SXDH

r : randomness that depends on the security parameter

 \boldsymbol{n} : size of ID space (i.e., $\boldsymbol{I} \coloneqq \{0,1\}^n$)

CCA-secure Hierarchical IKE

An well-known transformation [СНК04, ВСНК06]:

$$(\ell - 1)-\text{level}$$

$$CCA-\text{secure}$$

$$HIBE$$

$$Any \ \ell-\text{level}$$

$$CPA-\text{secure}$$

$$HIBE$$

$$Any \ One-\text{time}$$

$$Signature \ (OTS)$$

We cannot apply the transformation to a hierarchical IKE scheme in a generic way since it does not have delegating functionality:

However, by modifying the proposed hierarchical IKE scheme, we can realize CCA-secure scheme based on the transformation:

Conclusion

We proposed *l*-level hierarchical IKE scheme:

- met strong security (IND-KE-CPA security) without ROM
- secure under the SXDH assumption, which is a simple, static one
- > achieved constant-size parameters when $\ell = 1$

We also showed CCA-secure scheme from

- Proposed CPA-secure hierarchical IKE scheme; and
- Any one-time signature

