PKC 2016

Identity-based Hierarchical Key-insulated Encryption without Random Oracles

Yohei Watanabe ${ }^{1,3} \quad$ Junji Shikata ${ }^{1,2}$

1 Graduate School of Environment and Information Sciences, YNU, Japan
2 Institute of Advanced Sciences, YNU, Japan 3. ITRI, AIST, Japan

Key Insulation [DKxy02]

- One of solutions to key exposure problem

Stored in ...

Hierarchical Key Insulation [HHsio5]

There seem to be various practical applications !

Identity-based Hierarchical Key-insulated Encryption [HHsios]

- Abbreviated to `hierarchical IKE"
© Identity-based encryption (IBE) with hierarchical key insulation
© NOT hierarchical IBE (HIBE) with key insulation

- First proposed by Hanaoka et al. at ASIACRYPT 2005 [HHsio5]
- In the random oracle model (ROM)

However, NO known hierarchical IKE schemes w/o ROM!

Our Contribution

We propose an ℓ-level hierarchical IKE scheme that achieves:
(1) Strong security in the standard model from simple assumptions
\checkmark Using asymmetric pairing
\checkmark From Symmetric eXternal Diffie-Hellman (SXDH) assumption
\checkmark Based on Jutla-Roy HIBE [JR13] and its variant [RS14]
(2) Space efficiency (any parameters do not depend on ID-space sizes)
\checkmark Constant-size parameters when the hierarchy is one (i.e. $\ell=\mathbf{1}$)
$>$ Public parameters of the existing scheme [wLC+08] depend on
ID-space sizes due to the underlying Waters IBE [wat05]

Why is achieving (1) and (2) challenging? (more on this later)
$>$ Hierarchical IKE from any HIBE does not satisfy strong security
> Proof technique of Waters dual-system IBE [Wat09] does not work well

Type-3 Pairing and SXDH Assumption

(Type-3 Pairing (asymmetric pairing)
$\checkmark \boldsymbol{e}: \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{\boldsymbol{T}}$
\checkmark No efficiently computable isomorphisms between \mathbb{G}_{1} and \mathbb{G}_{2} are known

SXDH Assumption [BBS04]
\checkmark Decisional Diffie-Hellman (DDH) assumptions hold in \mathbb{G}_{1} and \mathbb{G}_{2}, respectively
\checkmark Advantage of \mathcal{A} in the DDHi game $(i \in\{1,2\})$ is defined by:

$$
\operatorname{Adv}(\lambda):=\operatorname{Pr}\left[b^{\prime}=b \left\lvert\, \begin{array}{c}
\boldsymbol{D}:=\left(\boldsymbol{p}, \mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{T}, \boldsymbol{g}_{1}, \boldsymbol{g}_{2}, \boldsymbol{e}\right) \leftarrow \mathcal{G} \\
c_{1}, \boldsymbol{c}_{2} \leftarrow \mathbb{Z}_{p}, \boldsymbol{b} \leftarrow\{\mathbf{0}, \mathbf{1}\} \\
\text { if } \boldsymbol{b}=\mathbf{0} \text { then } \boldsymbol{T}:=g_{i}^{c_{1} c_{2}} \text { else } \boldsymbol{T} \leftarrow \mathbb{G}_{i} \\
\boldsymbol{b}^{\prime} \leftarrow \mathcal{A}\left(D, g_{i}^{c_{1}}, g_{i}^{c_{2}}, T\right)
\end{array}\right.\right] .
$$

Time-period Map Function [HHsio5]

\checkmark Functions for "several kinds of time-periods" $\mathcal{I}_{0}, \ldots, \mathcal{I}_{\ell-1}$ Example: $\ell=4$, time=9:59 / 7th / Oct. / 2015
$\mathcal{T}_{0}($ time $)=t_{0}^{(19)}=1$ st -15 th $/$ Oct. / 2015,
$\mathcal{T}_{1}($ time $)=t_{1}^{(10)}=$ Oct. / 2015,
$\mathcal{T}_{2}($ time $)=t_{2}^{(5)}=$ Set. - Oct. / 2015,
$\mathcal{T}_{3}($ time $)=t_{3}^{(2)}=$ Jul. - Dec. $/ 2015$

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

\mathcal{T}_{3}	$t_{3}^{(1)}$												$t_{3}^{(2)}$											
\mathcal{T}_{2}	$t_{2}^{(1)}$				$t_{2}^{(2)}$				$t_{2}^{(3)}$				$t_{2}^{(4)}$				$t_{2}^{(5)}$				$t_{2}^{(6)}$			
\mathcal{T}_{1}	$t_{1}^{(1)}$		$t_{1}^{(2)}$		$t_{1}^{(3)}$		$t_{1}^{(4)}$		$t_{1}^{(5)}$		$t_{1}^{(6)}$		$t_{1}^{(7)}$		$t_{1}^{(8)}$		$t_{1}^{(9)}$		$t_{1}^{(10)}$		$t_{1}^{(11)}$		$t_{1}^{(12)}$	
\mathcal{T}_{0}	$t_{0}^{(1)}$	$t_{0}^{(2)}$	$t_{0}^{(3)}$	$t_{0}^{(4)}$	$t_{0}^{(5)}$	$t_{0}^{(6)}$	$t_{0}^{(7)}$	$t_{0}^{(8)}$	$t_{0}^{(9)}$	$t_{0}^{(10)}$	$t_{0}^{(11)}$	$t_{0}^{(12)}$	$t_{0}^{(13)}$	$t_{0}^{(14)}$	$t_{0}^{(15)}$	$t_{0}^{(16)}$	$t_{0}^{(17)}$	$t_{0}^{(18)}$	$t_{0}^{(19)}$	$t_{0}^{(20)}$	$t_{0}^{(21)}$	$t_{0}^{(22)}$	$t_{0}^{(23)}$	$t_{0}^{(24)}$

Hierarchical IKE: Model
Example: $\ell=2$

Hierarchical IKE: Security

IND-KE-CPA security:

KG oracle

Limitation of KI oracle
Hierarchy
\mathcal{A} can issue any queries if there exists at least one special level $\boldsymbol{j} \in\{0, \ldots, \ell\}$

\longrightarrow include strong security

Why Hierarchical IKE from HIBE is Insufficient

ℓ-level Hierarchical IKE

If secret key for I is leaked, all other secret keys can be generated \square the resulting scheme does not meet strong security \square does not meet IND-KE-CPA security!

Why Waters' Technique Does Not Work

Waters dual system IBE [Wat09]
$>$ Ciphertext $c t$ contains $\boldsymbol{t a g}_{\boldsymbol{C}}$ and secret key $s k_{I}$ contains $\boldsymbol{t a g}_{\boldsymbol{K}}$
[Important proof technique:
Some pairwise independent function is embedded into the public parameter for cancelling values
$>$ It raises $\operatorname{tag}_{C}=\operatorname{tag}_{K}$ for the same identity I
$>$ However, the proof works well since it is enough to generate
$>$ Only $\boldsymbol{t a g}_{\boldsymbol{K}}$ for all identities $\mathbf{I} \neq \mathbf{I}^{*}$
$>$ Only $\boldsymbol{\operatorname { a g }}_{\boldsymbol{C}}$ for the target identity I^{*}
On the other hand, in (hierarchical) IKE, \mathcal{A} can get secret keys for $I^{*}\left(i . e . \operatorname{tag}_{K}\right.$) as well as for $I \neq I^{*}$

Waters' technique cannot seem to be applied!

Why Jutla-Roy HIBE?

We can avoid such a collision problem!

$\checkmark s k_{I}$ does not contain any tag, though ct contains tag

- Jutla-Roy HIBE [JR13] and its variant [RS14]
- Constant-size IBE (when $\ell=1$)
- IND-ID-CPA security under the SXDH assumption
- Constant-size lowest-level key unlike [Wat09,Lw11]
$>$ It leads to constant-size decryption key

Remark
There might be other constant-size IBE schemes that can avoid the collision problem

Basic Idea of Our Construction

Specific $(\ell+1)$-level HIBE ($(\ell+1)$-level Jutla-Roy HIBE) +
(ℓ, ℓ)-secret sharing: secret B and shares $\beta_{i}(0 \leq i \leq \ell-1)$ s.t. $B=\sum_{i=0}^{\ell-1} \beta_{i}$

All $\boldsymbol{\beta}_{i}$ are needed to generate correct decryption key $\left(D_{1}, D_{1}^{\prime}, D_{2}, D_{2}^{\prime}, D_{3}\right)$
Adversary cannot generate decryption key for I^{*} at time* !

Encryption and Decryption Procedure

[$\operatorname{Enc}(\boldsymbol{m p k}, \mathrm{I}$, time, $M):$
$m p k:=\left(z, g_{1}, g_{1}^{\alpha},\left\{u_{1, j}\right\}_{j=0^{\prime}}^{\ell}, w_{1}, h_{1}, \ldots\right)$
Choose $s, t a g \leftarrow \mathbb{Z}_{p}$. Compute

$$
C_{0}:=M Z^{s}, C_{1}:=g_{1}^{s}, C_{2}:=\left(g_{1}^{\alpha}\right)^{s}, C_{3}:=\left(\prod_{j=0}^{\ell-1}\left(u_{1, j}^{t_{j}}\right) u_{1, t}^{1} w_{1}^{t a g} h_{1}\right)^{s}
$$

where $t_{j}:=T_{j}($ time $)(0 \leq j \leq \ell-1)$. Output $C:=\left(C_{0}, C_{1}, C_{2}, C_{3}, t a g\right)$.
$\left[\operatorname{Dec}\left(d k_{I, t_{0}},\langle C\right.\right.$, time $\left.\rangle\right):$
$d k_{I, t_{0}}:=\left(R_{0}, D_{1}, D_{1}^{\prime}, D_{2}, D_{2}^{\prime}, D_{3}\right)$

$$
M=\frac{C_{0} \cdot e\left(C_{3}, D_{3}\right)}{e\left(C_{1}, D_{1}^{t a g} D_{1}^{\prime}\right) e\left(C_{2}, D_{2}^{t a g} D_{2}^{\prime}\right)}
$$

Parameter Evaluation and Comparison

$\# p p$	$\# d k$	$\# h k_{i}$	$\# C$	Enc. cost	Dec. cost
$(3 \ell+13)\|\mathbb{G}\|$	$6\|\mathbb{G}\|$	$(2 i+6)\|\mathbb{G}\|$	$4\|\mathbb{G}\|+\left\|\mathbb{Z}_{p}\right\|$	$[0,0, \ell+4,1]$	$[3,0,2,0]$

$|\mathbb{G}|$: bit-length of a group element in $\mathbb{G}_{1}, \mathbb{G}_{2}$, or \mathbb{G}_{T}
$\left|\mathbb{Z}_{p}\right|$: bit-length of an element in \mathbb{Z}_{p}
$\# \boldsymbol{p} \boldsymbol{p}, \# \boldsymbol{d} \boldsymbol{k}, \# \boldsymbol{h} \boldsymbol{k}_{\boldsymbol{i}}, \# \boldsymbol{C}$: sizes of public parameter, dec. key, i-th helper key, and ciphertext [*,*,*,*] : [pairing, multi-exp., regular-exp., fix-based-exp.]

	$\# p p$	\#dk	\#hk	\#C	Enc. cost	Dec. cost	Assumption		
$\begin{gathered} \text { HHSIO5 } \\ (\ell=1) \end{gathered}$	$2\|\mathbb{G}\|$	$3\|\mathbb{G}\|$	$\|\mathbb{G}\|$	$4\|\mathbb{G}\|+\|r\|$	[1,0,2,1]	[4,0,2,1]	$\begin{aligned} & \text { CBDH } \\ & \text { (in ROM) } \end{aligned}$		
WLC+08 (threshold $t=1$)	$(2 n+5)\|\mathbb{G}\|$	4\|G		$2\|\mathbb{G}\|$	$4\|\mathbb{G}\|$	[0,1,2,1]	[3,0,0,0]	DBDH	
Our scheme $(\ell=1)$	16\|G		$6\|\mathbb{G}\|$	7\|G		$4\|\mathbb{G}\|+\left\|\mathbb{Z}_{p}\right\|$	[0,0,5,1]	[3,0,2,0]	SXDH

r : randomness that depends on the security parameter
\boldsymbol{n} : size of ID space (i.e., $I:=\{0,1\}^{n}$)

CCA-secure Merarchical MKE

An well-known transformation [Снко4,вСнко6] :

$$
\left.\left.\begin{array}{c}
(\ell-1) \text {-level } \\
\text { CCA-secure } \\
\text { HIBE }
\end{array}\right\} \begin{array}{c}
\text { Any } \ell \text {-level } \\
\text { CPA-secure } \\
\text { HIBE }
\end{array}\right) \longleftrightarrow \begin{gathered}
\text { Any One-time } \\
\text { signature (OTS) }
\end{gathered}
$$

We cannot apply the transformation to a hierarchical IKE scheme in a generic way since it does not have delegating functionality:
 Any ℓ-level CPA-secure Hierarchical IKE K Any

However, by modifying the proposed hierarchical IKE scheme, we can realize CCA-secure scheme based on the transformation:

$$
\begin{gathered}
(\ell-1) \text {-level } \\
\text { CCA-secure } \\
\text { Hierarchical IKE }
\end{gathered}
$$

Our ℓ-level
CPA-secure Hierarchical IKE

Conclusion

We proposed ℓ-level hierarchical IKE scheme:
$>$ met strong security (IND-KE-CPA security) without ROM
$>$ secure under the SXDH assumption, which is a simple, static one
$>$ achieved constant-size parameters when $\ell=1$
We also showed CCA-secure scheme from
> Proposed CPA-secure hierarchical IKE scheme; and
> Any one-time signature

