Mitigating Multi-Target-Attacks in Hash-based Signatures

Andreas Hülsing

joint work with Joost Rijneveld, Fang Song

A brief motivation

NATIONAL SECURITY AGENCY (M) (SK) CENTRAL SECURITY SERVICE

Defending Our Nation. Securing The Future.

OME ABOUT NSA ACADEMIA	BUSINESS CAREERS INFORMATION ASSURANCE RESEARCH PUBLIC INFORMATION CIVIL LIBERTIES					
Information Assurance	Home > Information Assurance > Programs > NSA Suite B Cryptography SEARCH					
About IA at NSA	Cryptography Today					
IA Client and Partner Support						
IA News	In the current global environment, rapid and secure information sharing is important to protect our Nation, its					
IA Events	citizens and its interests. Strong cryptographic algorithms and secure protocol standards are vital tools that					
IA Mitigation Guidance	contribute to our national security and help address the ubiquitous need for secure, interoperable communications.					
IA Academic Outreach	communications.					
IA Business and Research	Currently, Suite B cryptographic algorithms are specified by the National Institute of Standards and					
- IA Programs	Technology (NIST) and are used by NSA's Information Assurance Directorate in solutions approved for					
Commercial Solutions for Classified Program	protecting classified and unclassified National Security Systems (NSS). Below, we announce preliminary plans for transitioning to quantum resistant algorithms.					
Global Information Grid	Background					
High Assurance Platform	IAD will initiate a transition to quantum resistant algorithms in the not too distant future. Based on experienc					
Inline Media Encryptor	in deploying Suite B, we have determined to start planning and communicating early about the upcoming					
Suite B Cryptography	transition to quantum resistant algorithms. Our ultimate goal is to provide cost effective security against a					
NSA Mobility Program	potential quantum computer. We are working with partners across the USG, vendors, and standards bodies					
National Security Cyber Assistance Program	to ensure there is a clear plan for getting a new suite of algorithms that are developed in an open and transparent manner that will form the foundation of our next Suite of cryptographic algorithms.					

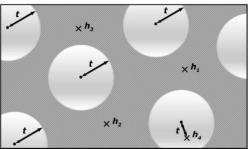
NISTIR 8105 DRAFT

Report on Post-Quantum Cryptography

Lily Chen Stephen Jordan Yi-Kai Liu Dustin Moody Rene Peralta Ray Perlner Daniel Smith-Tone

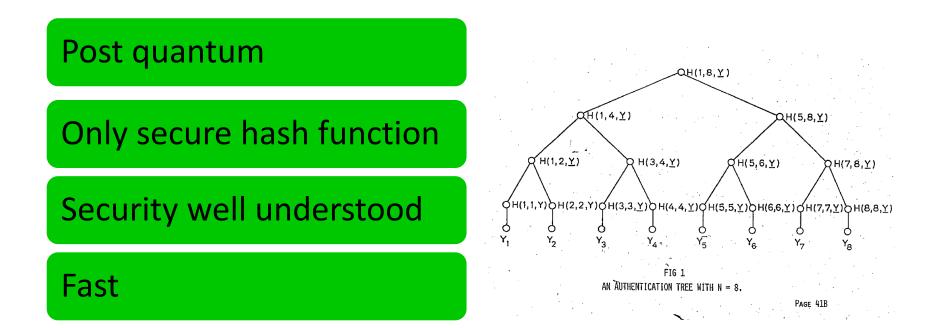
Trapdoor- / Identification Scheme-based (PQ-)Signatures

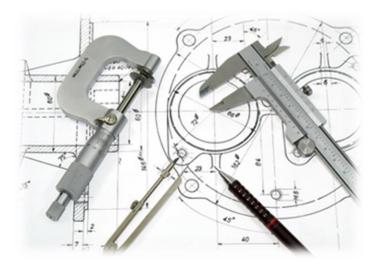
Lattice, MQ, Coding



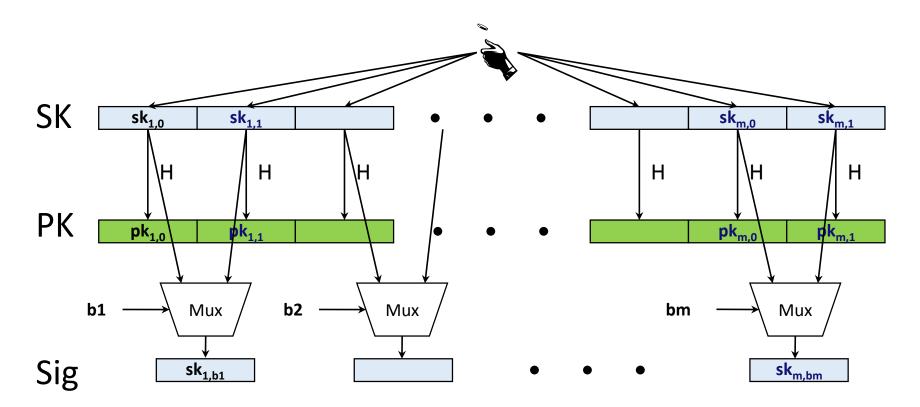
Signature and/or key sizes

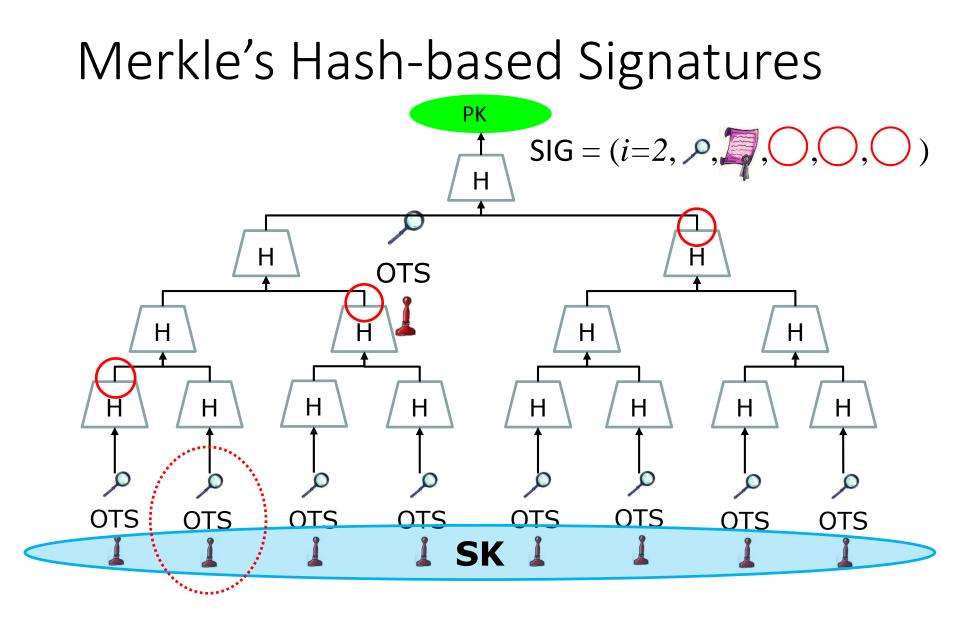
Runtimes




 $y_1 = x_1^2 + x_1x_2 + x_1x_4 + x_3$ $y_2 = x_3^2 + x_2x_3 + x_2x_4 + x_1 + 1$ $y_3 = \dots$

Hash-based Signature Schemes




Basic Construction

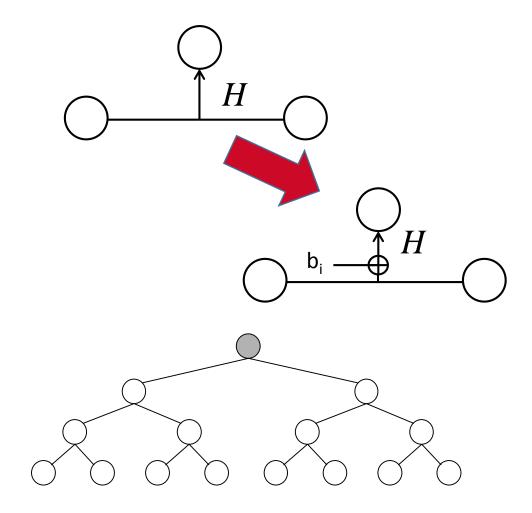
Lamport-Diffie OTS [Lam79]

Message M = b1,...,bm, OWF H = n bit

Minimizing security assumptions...

[BHH+15,BDE+11,BDH11, DOTV08,Hül13,HRB13]

XMSS

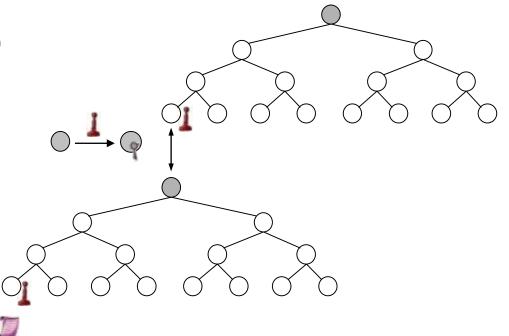

Tree: Uses bitmasks

Leafs: Use binary tree with bitmasks

OTS: WOTS⁺

Message digest: Randomized hashing

Collision-resilient -> signature size halved



Multi-Tree XMSS

Uses multiple layers of trees

-> Key generation (= Building first tree on each layer) $\Theta(2^h) \rightarrow \Theta(d^*2^{h/d})$

-> Allows to reduce worst-case signing times $\Theta(h/2) \rightarrow \Theta(h/2d)$

...and dealing with the consequences

Multi-target attacks

What is the bit security of a protocol using a n = 256 bit hash function that requires one-wayness?

256 bit?

Not necessarily!

Multi-target attacks

- Consider $H_n := \{h_k: \{0,1\}^m \to \{0,1\}^n | k \in \{0,1\}^n\}$
- Assume protocol Π that uses $h_k p$ times
- Break $\Pi \leftarrow \text{invert } h_k$ on <u>one out of p</u> different values.

Attack complexity: $\Theta(2^{n - \log p})$ (generic attacks) Bit security: $n - \log p$ Similar problem applies for SPR, eTCR,....

Formalizing the issue

One-wayness:

$$\operatorname{Succ}_{\mathcal{H}_{n}}^{\operatorname{ow}}(\mathcal{A}) = \Pr\left[K \xleftarrow{\$} \{0,1\}^{k}; M \xleftarrow{\$} \{0,1\}^{m}, Y \longleftarrow \operatorname{H}_{K}(M);\right]$$
$$M' \xleftarrow{\$} \mathcal{A}(K,Y) : Y = \operatorname{H}_{K}(M')\right]. \tag{1}$$

Succ^{ow}_{$$\mathcal{H}_n$$} $(\mathcal{A}) = \left(\frac{q+1}{2^n}\right)$, for any classical q-query A
Single-function, multi-target one-wayness

 $\operatorname{Succ}_{\mathcal{H}_{n},p}^{\operatorname{SM-OW}}(\mathcal{A}) = \Pr\left[K \xleftarrow{\$} \{0,1\}^{k}; M_{i} \xleftarrow{\$} \{0,1\}^{m}, Y_{i} \longleftarrow \operatorname{H}_{K}(M_{i}), 0 < i \leq p; M' \xleftarrow{\$} \mathcal{A}(K, (Y_{1}, \dots, Y_{p})) : \exists 0 < i \leq p, Y_{i} = \operatorname{H}_{K}(M')\right].$ (2)

Succ^{SM-OW}_{\mathcal{H}_n,p} $(\mathcal{A}) = \left(\frac{(q+1)p}{2^n}\right),$

Solution?

Use different elements from function family for each hash.

- Makes problems independent
- Each hash query can only be used for one target!

Multi-function, multi-target OW

$$\operatorname{Succ}_{\mathcal{H}_{n},p}^{\operatorname{MM-OW}}(\mathcal{A}) = \Pr\left[K_{i} \xleftarrow{\$} \{0,1\}^{k}, M_{i} \xleftarrow{\$} \{0,1\}^{m}, Y_{i} \longleftarrow \operatorname{H}_{K_{i}}(M_{i}), 0 < i \leq p; (j,M') \xleftarrow{\$} \mathcal{A}((K_{1},Y_{1}),\ldots,(K_{p},Y_{p})) : Y_{j} = \operatorname{H}_{K_{j}}(M')\right].$$
(3)

Succ_{$$\mathcal{H}_n, p$$}^{MM-OW} $(\mathcal{A}) = \left(\frac{q+1}{2^n}\right),$

Seems trivial, right?

What about the quantum case? Still trivial?

Technique for quantum bounds

• Define hard avg. case search problem:

Definition 1. Let $\mathcal{F} := \{f : \{0,1\}^m \to \{0,1\}\}$ be the collection of all boolean functions on $\{0,1\}^m$. Let $\lambda \in [0,1]$ and $\varepsilon > 0$. Define a family of distributions D_{λ} on \mathcal{F} such that $f \leftarrow_R D_{\lambda}$ satisfies

$$f: x \mapsto \begin{cases} 1 & \text{ with prob. } \lambda, \\ 0 & \text{ with prob. } 1 - \lambda \end{cases}$$

for any $x \in \{0, 1\}^m$.

Reduce this to OW (SPR,....) of random function family

Results

	OW, MM-OW, SPR, MM-SPR	SM-OW, SM-SPR	ETCR	M-ETCR
Classical	$\frac{q+1}{2^n}$	$\frac{(q+1)p}{2^n}$	$\frac{(q+1)}{2^n} + \frac{q}{2^k}$	$\frac{(q+1)p}{2^n} + \frac{qp}{2^k}$
Quantum	$\Theta(rac{(q+1)^2}{2^n})$	$\Theta(rac{(q+1)^2p}{2^n})$	$\Theta(\frac{(q+1)^2}{2^n})$	$\Theta(\frac{(q+1)^2p}{2^n})$

Table 1. Security against generic classical and quantum attacks. Entries represent the success probability of a q-query adversary.

Implications

- → Tight security for MSS that rely on multi-function properties (works for stateful & stateless).
- \rightarrow New function (key) for each call.
- \rightarrow New bitmask too for SPR.
- \rightarrow No solution for message digest, yet (see eTCR)

XMSS / XMSS-T Implementation (same parameters)

C Implementation, using OpenSSL [HRS16]

	Sign (ms)	Signature (kB)	Public Key (kB)	Secret Key (kB)	Bit Security classical/ quantum	Comment
XMSS	3.24	2.8	1.3	2.2	212 / 106	h = 20, d = 1,
XMSS-T	9.48	2.8	0.064	2.2	190 / 95	h = 20, d = 1
XMSS	3.59	8.3	1.3	14.6	170 / 85	h = 60, d = 3
XMSS-T	10.54	8.3	0.064	14.6	190 / 95	h = 60, d = 3

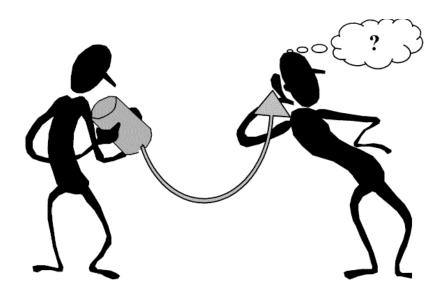
Intel(R) Core(TM) i7 CPU @ 3.50GHz All using SHA2-256, w = 16 and k = 2

XMSS / XMSS-T Implementation (same security)

C Implementation, using OpenSSL [HRS16]

	Sign (ms)	Signature (kB)	Public Key (kB)	Secret Key (kB)	Bit Security classical/ quantum	Comment
XMSS	4.98	3.5	1.5	2.6	256/ 128	h = 20, d = 1, m = 276, n = 300
XMSS-T	10.14	2.9	0.064	2.2	256/ 128	h = 20, d = 1, m = 276, n = 256
XMSS	6.43	13.7	1.7	21.4	256/ 128	h = 60, d = 3, m = 316, n = 342
XMSS-T	12.82	8.8	0.064	14.6	256/ 128	h = 60, d = 3, m = 316, n = 256

Intel(R) Core(TM) i7 CPU @ 3.50GHz All using SHA2-256 or SHA2-512, w = 16 and k = 2


In paper

• XMSS-T

(== draft-irtf-cfrg-xmss-hash-based-signatures-02)

- Tight security reduction for XMSS-T
- Implementation of XMSS & XMSS-T

Thank you! Questions?

For references & further literature see https://huelsing.wordpress.com/hash-based-signature-schemes/literature/