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Functional Encryption and Secure Delegation of
Computation

In a functional encryption (FE) scheme for certain function family F , it
is possible to derive functional keys skf for any function f ∈ F from a
master secret key.

Any party given such a functional key skf and a ciphertext ctz encrypt-
ing some message z, should be able to learn f(z) and nothing beyond
that about z.

FE enables secure computation on private sensitive data outsourced to
untrusted servers by remotely querying the server.
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Need of Function Privacy in Functional Encryption

Assume that a health organization subscribes to a cloud service provider
to store medical records of its patients.
To ensure data confidentiality, the organization encrypts those records
locally using an FE scheme prior to uploading them to the cloud server.
Now, the health organization gives the cloud a functional key correspond-
ing to the function that determines the names of the patients who are
receiving treatment for some chronic disease.
Say, after performing the assigned computation on the encrypted records
using the given functional key, the cloud server obtains a list of patients
that includes the name of a certain celebrity.
If the cloud server also comes to know the functionality it has computed
on the encrypted records yielding that list, it would at once understand
that the particular celebrity is suffering from such a chronic disease and
it might leak this information to the media, possibly for financial gain.
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Inner Product Functionality and its Applications

A function ip #»y ∈ IPp is associated with a vector #»y ∈ Znp over the finite
field Zp, where p is a prime integer.

On a message #»x ∈ Znp , ip #»y ( #»x ) = 〈 #»x , #»y 〉 modulo p.

Inner product is extremely useful functionality in the context of descrip-
tive statistics, e.g., to compute the weighted mean of a collection of
informations.

Inner product enables computation of conjunctions, disjunctions, poly-
nomial evaluations, and exact thresholds.
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Syntax of Private Key Function-Private Inner Product
Encryption (PKFP-IPE)

PKFP-IPE.Setup(1λ, n)→ msk,pp

PKFP-IPE.Encrypt(msk,pp, #»x ∈ Znp\{
#»0 })→ ct #»x

PKFP-IPE.KeyGen(msk,pp, #»y ∈ Znp\{
#»0 })→ sk #»y

PKFP-IPE.Decrypt(pp,ct #»x , sk #»y )→ 〈 #»x , #»y 〉

Sourav Mukhopadhyay FE for Inner Product with Full Function Privacy 6–9th March, 2016 4



Introduction Preliminaries Our PKFP-IPE Scheme Security Efficiency Conclusion

Full-Hiding Security Model for PKFP-IPE
Challenger (C) Adversary (A)

Runs PKFP-IPE.Setup

Runs PKFP-IPE.KeyGen

Runs PKFP-IPE.Encrypt

pp

(~y(j,0), ~y(j,1))

sk~y(j,c)

c′ ∈ {0, 1}

(~x(ℓ,0), ~x(ℓ,1))

ct~x(ℓ,c)

Setup

Query Phase

Guess

Chooses c ∈$ {0, 1}

〈~x(ℓ,0), ~y(j,0)〉 = 〈~x(ℓ,1), ~y(j,1)〉∀j, ℓ

AdvPKFP-IPEA (λ) = |Pr[c′ = c]− 1/2| ≤ negl(λ)
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Motivation

The security framework of [BJK15] assumes that for all ( #»y (j,0), #»y (j,1))
and ( #»x (`,0), #»x (`,1)) with which the adversaries query the functional key
generation and encryption oracles respectively, it holds that

〈 #»x (`,0), #»y (j,0)〉 = 〈 #»x (`,0), #»y (j,1)〉 = 〈 #»x (`,1), #»y (j,0)〉 = 〈 #»x (`,1), #»y (j,1)〉

which is a stronger requirement than the restriction imposed in full-hiding
security model.
Our goal is to develop function-private PKFP-IPE scheme whose security
does not require any such extra restriction beyond that specified in the
full-hiding security model.
We attempt to build PKFP-IPE which is non-generic and uses efficient
and standard primitives.

[BJK15]: Allison Bishop, Abhishek Jain, and Lucas Kowalczyk. ASIACRYPT 2015.
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Asymmetric Bilinear Pairing Group

An asymmetric bilinear pairing group (p,G1,G2,GT , g1, g2, e)
$←− GABPG(1λ)

is a tuple of
a prime integer p;
cyclic multiplicative groups G1,G2,GT of order p each with polynomial-
time computable group operations;
generators g1 ∈ G1, g2 ∈ G2;
a polynomial-time computable pairing e : G1 ×G2 → GT that satisfies

(bilinearity) e(gs1, gs̆2) = e(g1, g2)ss̆ for all s, s̆ ∈ Zp and
(non-degeneracy) e(g1, g2) 6= 1GT

, where 1GT
denotes the identity element

of the group GT .
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Dual Pairing Vector Spaces (DPVS)
A DPVS (p,V1,V2, GT ,A1,A2, E) ← GDPVS

(
n, (p,G1,G2,GT , g1, g2, e)

)
is a tuple of

a prime integer p;
n-dimensional vector space Vh = Gn

h over Zp under g #»v
h ⊕ g

#»w
h = g

#»v+ #»w
h

and a⊗ g #»v
h = ga

#»v
h , for h = 1, 2, where #»v , #»w ∈ Znp , and a ∈ Zp;

canonical bases Ah = {g
#»e i
h }i=1,...,n of Vh, for h = 1, 2,

where #»e i = (
i−1︷ ︸︸ ︷

0, . . . , 0, 1,
n−i︷ ︸︸ ︷

0, . . . , 0) ∈ Znp ;
a pairing E : V1 × V2 → GT defined by

E(g
#»v
1 , g

#»w
2 ) =

n∏
i=1

e(gvi1 , g
wi
2 ) = e(g1, g2)〈

#»v , #»w〉 ∈ GT ,

where #»v , #»w ∈ Znp , that satisfies
(bilinearity) E(s⊗ g #»v

1 , s̆⊗ g
#»w
2 ) = E(gs #»v

1 , gs̆
#»w

2 ) = E(g #»v
1 , g

#»w
2 )ss̆

for s, s̆ ∈ Zp, #»v , #»w ∈ Znp and
(non-degeneracy) if E(g #»v

1 , g
#»w
2 ) = 1GT

for all #»w ∈ Znp , then #»v = #»0 .
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Dual orthonormal basis generator GOB(Znp)

1 Choose B = (bi,j)i,j=1,...,n
$←− GL(n,Zp).

2 Compute B∗ = (b∗i,j)i,j=1,...,n = (Bᵀ)−1.
3 Let, #»

b i and
#»

b ∗i represent the i-th rows of B and B∗ respectively, for
i = 1, . . . , n.

4 Set B = { #»

b 1, . . . ,
#»

b n} and B∗ = { #»

b ∗1, . . . ,
#»

b ∗n}.
5 (B,B∗) are dual orthonormal in the sense that for i, i′ = 1, . . . , n,

〈 #»

b i,
#»

b ∗i′〉 =
{

1, if i = i′

0, otherwise

6 Return (B,B∗).
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Construction
PKFP-IPE.Setup(1λ, n)

1 (p,G1,G2,GT , g1, g2, e)
$←− GABPG(1λ).

2 (p,V1,V2,GT ,A1,A2, E)← GDPVS
(
4n+ 2, (p,G1,G2,GT , g1, g2, e)

)
,

(p,V′1,V′2,GT ,A′1,A′2, E′)← GDPVS
(
6, (p,G1,G2,GT , g1, g2, e)

)
.

3
(
B = { #»

b 1, . . . ,
#»

b 4n+2}, B∗ = { #»

b ∗1, . . . ,
#»

b ∗4n+2}
) $←− GOB(Z4n+2

p ),(
D = { #»

d 1, . . . ,
#»

d 6}, D∗ = { #»

d ∗1, . . . ,
#»

d ∗6}
) $←− GOB(Z6

p).

4 Define B̂ = { #»

b 1, . . . ,
#»

b n,
#»

b 4n+2}, B̂∗ = { #»

b ∗1, . . . ,
#»

b ∗n,
#»

b ∗4n+1},
D̂ = { #»

d 1,
#»

d 6}, D̂∗ = { #»

d ∗1,
#»

d ∗5}.

5 Keep msk = (B̂, B̂∗, D̂, D̂∗).
Publish pp =

(
p, {Vh,V′h}h=1,2,GT , {Ah,A′h}h=1,2, E,E

′).
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Construction
PKFP-IPE.Encrypt(msk, pp, #»x ∈ Znp\{ #»0 })

1 Select α, ξ, ξ0
$←− Zp and compute

c1 = g
α
∑n

i=1 xi
#»
b i+ξ

#»
b 4n+2

1 ,

c2 = gα
#»
d 1+ξ0

#»
d 6

1

utilizing B̂ and D̂ respectively from msk.

2 Output ct #»x = (c1, c2).
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Construction
PKFP-IPE.KeyGen(msk, pp, #»y ∈ Znp\{ #»0 })

1 Pick γ, η, η0
$←− Zp and compute

k∗1 = g
γ
∑n

i=1 yi
#»
b ∗i+η #»

b ∗4n+1
2 ,

k∗2 = g
γ

#»
d ∗1+η0

#»
d ∗5

2

utilizing B̂∗ and D̂∗ respectively from msk.

2 Provide sk #»y = (k∗1,k∗2) to a legitimate decrypter.
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Construction
PKFP-IPE.Decrypt

(
pp, ct #»x = (c1, c2), sk #»y = (k∗1 , k∗2)

)

1 It computes

T1 = E(c1,k
∗
1),

T2 = E′(c2,k
∗
2).

2 Attempt to determine a value m ∈ Zp such that Tm2 = T1 as elements
of GT by checking a specified polynomial-size range of possible values.
If successful, output m. Otherwise output ⊥.

Remark: The polynomial running time of our decryption algorithm is guar-
anteed by restricting the output to lie within a fixed polynomial-size range.
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Correctness

For any ct #»x = (c1, c2) and any sk #»y = (k∗1,k∗2), we have

T1 = E(c1,k
∗
1) = e(g1, g2)αγ〈

#»x , #»y 〉,

T2 = E′(c2,k
∗
2) = e(g1, g2)αγ .

This follows from the expressions of c1, c2,k
∗
1,k
∗
2 together with the fact

that (B,B∗) and (D,D∗) are dual orthonormal bases.

Thus if 〈 #»x , #»y 〉 is contained in the specified polynomial-size range of
possible values that the decryption algorithm checks, it would output
〈 #»x , #»y 〉 as desired.
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Security Statement

Theorem
Our PKFP-IPE scheme is secure as per the strongest indistinguishability-
based function-privacy model of Brakerski and Segev (TCC 2014) under
the SXDH assumption.
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Symmetric External Diffie-Hellman (SXDH) Assumption

It is hard to distinguish between the distributions

%β =
(
(p,G1,G2,GT , g1, g2, e), gµ1 , gν1 ,<β,

)
for β ∈ {0, 1}

such that
(p,G1,G2,GT , g1, g2, e)

$←− GABPG(1λ),

µ, ν
$←− Zp,

<β = gµν+r
1 where r = 0 or r $←− Zp according as β = 0 or 1 respectively.

The same is true for the analogous distributions obtained from switching
the roles of G1 and G2.
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Our Proof Idea

We design our hybrid argument in a non-trivial way to use the following
information theoretic property of DPVS:

Lemma (Okamoto and Takashima (ASIACRYPT 2012))

For τ ∈ Zp, let Sτ = {( #»χ,
#»

ϑ ) | 〈 #»χ,
#»

ϑ 〉 = τ} ⊂ Znp × Znp , where p is a
prime integer and n is some positive integer. For all ( #»χ,

#»

ϑ ) ∈ Sτ , for all
( #»

ζ , #»υ ) ∈ Sτ ,
Pr
[

#»χ ·F = #»

ζ
∧ #»

ϑ ·F ∗ = #»υ
]

= Pr
[

#»χ ·F ∗ = #»

ζ
∧ #»

ϑ ·F = #»υ
]

= 1/]Sτ ,

where F
$←− GL(n,Zp),F ∗ = (F ᵀ)−1, and for any set A, ]A denotes the

cardinality of the set A.

We begin our hybrid game transition by changing the form of the queried
ciphertexts and instead of finishing it off completely, at some appropriate
point, we initiate change in the queried functional keys.
Since then functional keys and ciphertexts change hand in hand.
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Communication and Storage Comparison

PKFP-IPE Security Complexity
Assumption |msk| |ct #»x | |sk #»y |

[BJK15] weak
function-hiding SXDH 8n2 + 8 in Zp 2n+ 2 in G1 2n+ 2 in G2

Ours strong
function-hiding SXDH 8n2 + 12n+ 28 in Zp 4n+ 8 in G1 4n+ 8 in G2

[BJK15]: Allison Bishop, Abhishek Jain, and Lucas Kowalczyk. ASIACRYPT 2015.
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Computation Comparison

PKFP-IPE PKFP-IPE.Encrypt PKFP-IPE.KeyGen PKFP-IPE.Decrypt

[BJK15] 2n+ 2 exp. in G1 2n+ 2 exp. in G2 2n+ 2 pairings

Ours 4n+ 8 exp. in G1 4n+ 8 exp. in G2 4n+ 8 pairings

[BJK15]: Allison Bishop, Abhishek Jain, and Lucas Kowalczyk. ASIACRYPT 2015.
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Summary and Future Scope

We have presented the first non-generic private key FE scheme for the
inner product functionality achieving the strongest indistinguishability-
based notion of function privacy, namely, the full-hiding security.
Our construction has utilized the standard asymmetric bilinear pairing
group of prime order and has derived its security from the SXDH as-
sumption.
A significant future direction of research in this area would be to explore
simulation-based notion of function privacy in the context of IPE in the
private key setting.

Sourav Mukhopadhyay FE for Inner Product with Full Function Privacy 6–9th March, 2016 20



Introduction Preliminaries Our PKFP-IPE Scheme Security Efficiency Conclusion

Thanking Note
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