Algebraic approaches for the Elliptic Curve Discrete Logarithm Problem over Prime Fields

Christophe Petit, Michiel Kosters, Ange Messeng University of Oxford, University of California Irvine, University of Passau

Christophe Petit - PKC2016 - Prime ECDLP

Elliptic Curve Discrete Logarithm Problem

- Elliptic Curve Discrete Logarithm Problem (ECDLP)
 Let K a finite field and let E be an elliptic curve over K.
 Let P ∈ E(K) and let Q ∈ G :=< P >.
 Find k ∈ Z such that Q = kP.
- In practice K is a prime field, a binary field with prime degree extension, or 𝔽_{pⁿ} with n relatively small

Elliptic Curve Discrete Logarithm Problem

- Elliptic Curve Discrete Logarithm Problem (ECDLP) Let K a finite field and let E be an elliptic curve over K.
 Let P ∈ E(K) and let Q ∈ G :=< P >.
 Find k ∈ Z such that Q = kP.
- In practice K is a prime field, a binary field with prime degree extension, or 𝔽_{pⁿ} with n relatively small
- \blacktriangleright Elliptic Curve Cryptography secure \Rightarrow ECDLP hard

Can apply generic attacks

- Can apply generic attacks
- For exceptional parameters, can reduce it to another discrete logarithm problem
 - Anomalous attack
 - Reduction to finite field DLP using pairings
 - Reduction to a hyperelliptic curve DLP

- Can apply generic attacks
- For exceptional parameters, can reduce it to another discrete logarithm problem
 - Anomalous attack
 - Reduction to finite field DLP using pairings
 - Reduction to a hyperelliptic curve DLP
- Index calculus approaches being developed since 2004, but mostly focused on extension fields

- Can apply generic attacks
- For exceptional parameters, can reduce it to another discrete logarithm problem
 - Anomalous attack
 - Reduction to finite field DLP using pairings
 - Reduction to a hyperelliptic curve DLP
- Index calculus approaches being developed since 2004, but mostly focused on extension fields
- Our goal : extend previous index calculus algorithms to ECDLP over prime fields

Outline

Previous index calculus algorithms for ECDLP

New variants for curves over prime fields

Christophe Petit - PKC2016 - Prime ECDLP

Outline

Previous index calculus algorithms for ECDLP

New variants for curves over prime fields

Christophe Petit - PKC2016 - Prime ECDLP

Index Calculus for Elliptic Curves

1. Fix $m \in \mathbb{Z}$, and fix $V \subset K$ with $|V|^m \approx K$ Define a *factor basis*

$$\mathcal{F} = \{(x, y) \in E(\mathcal{K}) \mid x \in V\}$$

Index Calculus for Elliptic Curves

1. Fix $m \in \mathbb{Z}$, and fix $V \subset K$ with $|V|^m \approx K$ Define a *factor basis*

$$\mathcal{F} = \{(x, y) \in E(K) \mid x \in V\}$$

2. Compute about $|\mathcal{F}|$ relations

$$a_i P + b_i Q = P_{i,1} + P_{i,2} + \ldots + P_{i,m}$$

with $P_{i,j} \in \mathcal{F}$

Index Calculus for Elliptic Curves

1. Fix $m \in \mathbb{Z}$, and fix $V \subset K$ with $|V|^m \approx K$ Define a *factor basis*

$$\mathcal{F} = \{(x, y) \in E(K) \mid x \in V\}$$

2. Compute about $|\mathcal{F}|$ relations

$$a_i P + b_i Q = P_{i,1} + P_{i,2} + \ldots + P_{i,m}$$

with $P_{i,j} \in \mathcal{F}$

3. Linear algebra on relations gives aP + bQ = 0

- Semaev polynomials relate the x-coordinates of points that sum up to 0 :
 S_r(x₁,...,x_r) = 0
 ⇒ ∃(x_i, y_i) ∈ E(K̄) s.t. (x₁, y₁) + ··· + (x_r, y_r) = 0
- Relation search
 - Compute (X, Y) := aP + bQ for random a, b
 - Search for $x_i \in V$ with $S_{m+1}(x_1, \ldots, x_m, X) = 0$
 - ► For any such solution, find corresponding y_i values

Existing Variants

Semaev

- $K = \mathbb{F}_p$ and V contains all "small" elements
- No algorithm to solve S_{m+1}

Existing Variants

- Semaev
 - $K = \mathbb{F}_p$ and V contains all "small" elements
 - No algorithm to solve S_{m+1}
- Gaudry-Diem
 - $K = \mathbb{F}_{q^n}$ and $V = \mathbb{F}_q$
 - Reduction to polynomial system over \mathbb{F}_q
 - Generic bounds give $L_{q^n}(2/3)$ complexity if $q = L_{q^n}(2/3)$

Existing Variants

- Semaev
 - $K = \mathbb{F}_p$ and V contains all "small" elements
 - No algorithm to solve S_{m+1}
- Gaudry-Diem
 - $K = \mathbb{F}_{q^n}$ and $V = \mathbb{F}_q$
 - Reduction to polynomial system over \mathbb{F}_q
 - Generic bounds give $L_{q^n}(2/3)$ complexity if $q = L_{q^n}(2/3)$
- Diem, FPPR, P-Quisquater
 - $K = \mathbb{F}_{2^n}$ and V a vector space of K over \mathbb{F}_2
 - Reduction to polynomial system over \mathbb{F}_2
 - Experiments suggest system "somewhat easy"

Relation search : Weil Descent

► For each relation solve a generalized root-finding problem

Given $f \in \mathbb{F}_{q^n}[x_1, \ldots, x_m]$ and vector space $V \subset \mathbb{F}_{q^n}$, find $x_i \in V$ such that $f(x_1, \ldots, x_m) = 0$

► For each relation solve a generalized root-finding problem

Given $f \in \mathbb{F}_{q^n}[x_1, \ldots, x_m]$ and vector space $V \subset \mathbb{F}_{q^n}$, find $x_i \in V$ such that $f(x_1, \ldots, x_m) = 0$

Solved by Weil Descent : reduction to polynomial system

- Fix a basis for V over \mathbb{F}_q
- Introduce variables $x_{ij} \in \mathbb{F}_q$ with $x_i = \sum_j x_{ij} v_j$
- See single equation f (∑_j x_{1j}v_j,..., ∑_j x_{mj}v_j) = 0 over ℝ_{qⁿ} as a system of n equations over ℝ_q

Limits of previous works

• Fields with $q = L_{q^n}(2/3)$ are not used in practice

Limits of previous works

- Fields with $q = L_{q^n}(2/3)$ are not used in practice
- In binary case asymptotic complexity is not clear, and practical complexity is poor

Limits of previous works

- Fields with $q = L_{q^n}(2/3)$ are not used in practice
- In binary case asymptotic complexity is not clear, and practical complexity is poor
- Not clear how to extend to prime fields : no subspace available and we a priori want small degree equations

Outline

Previous index calculus algorithms for ECDLP

New variants for curves over prime fields

Christophe Petit - PKC2016 - Prime ECDLP

Main idea

▶ Find low degree rational maps L_j such that

$$\#\{x \in \mathbb{F}_{\rho} \mid L(x) = L_{n'} \circ \ldots \circ L_1(x) = 0\} \approx \prod \deg L_j \approx \rho^{1/m}$$

- Define $V = \{x \in \mathbb{F}_p \mid L(x) = 0\}$
- ▶ Define $\mathcal{F} = \{(x, y) \in E(K) \mid x \in V\}$

Main idea

▶ Find low degree rational maps L_j such that

$$\#\{x \in \mathbb{F}_p \mid L(x) = L_{n'} \circ \ldots \circ L_1(x) = 0\} \approx \prod \deg L_j \approx p^{1/m}$$

- Define $V = \{x \in \mathbb{F}_p \mid L(x) = 0\}$
- Define $\mathcal{F} = \{(x, y) \in E(\mathcal{K}) \mid x \in V\}$
- ► Relation search : solve the polynomial system

$$\begin{cases} S_{m+1}(x_{11}, \dots, x_{m1}, X) = 0\\ x_{i,j+1} = L_j(x_{i,j}) & i = 1, \dots, m; j = 1, \dots, n' - 1\\ 0 = L_{n'}(x_{i,n'}) & i = 1, \dots, m. \end{cases}$$

Christophe Petit - PKC2016 - Prime ECDLP

Remarks

- One can write similar systems in binary cases, and show they are equivalent to Weil descent systems
- Precomputation of the maps L_j can a priori be used for any DLP defined over any curve over the same field

Remarks

- One can write similar systems in binary cases, and show they are equivalent to Weil descent systems
- Precomputation of the maps L_j can a priori be used for any DLP defined over any curve over the same field
- Remaining of the talk :
 - How to compute the maps L_j ?
 - How to solve the system?

Finding good maps : p-1 "smooth"

- Suppose $\mathbf{p} \mathbf{1} = S \cdot N'$ with $S \approx p^{1/m}$ smooth
- ▶ We want low degree rational maps L_j such that

$$\#\{x \in \mathbb{F}_p \mid L(x) = L_{n'} \circ \ldots \circ L_1(x) = 0\} \approx \prod \deg L_j \approx p^{1/m}$$

Finding good maps : p-1 "smooth"

- Suppose $\mathbf{p} \mathbf{1} = S \cdot N'$ with $S \approx p^{1/m}$ smooth
- ► We want low degree rational maps L_j such that

$$\#\{x \in \mathbb{F}_p \mid L(x) = L_{n'} \circ \ldots \circ L_1(x) = 0\} \approx \prod \deg L_j \approx p^{1/m}$$

• Take
$$L(X) = X^{S} - 1$$
 and V subgroup of order S in \mathbb{F}_{p}^{*}

- If
$$S=\prod_{j=1}^{n'}q_j$$
 take $L_j(X)=X^{q_j}$ and $L_{n'}(X)=X^{q_{n'}}-1$

Finding good maps : p-1 "smooth"

- Suppose $\mathbf{p} \mathbf{1} = S \cdot N'$ with $S \approx p^{1/m}$ smooth
- ► We want low degree rational maps L_j such that

$$\#\{x \in \mathbb{F}_p \mid L(x) = L_{n'} \circ \ldots \circ L_1(x) = 0\} \approx \prod \deg L_j \approx p^{1/m}$$

• Take
$$L(X) = X^{S} - 1$$
 and V subgroup of order S in \mathbb{F}_{p}^{*}

- If $S = \prod_{j=1}^{n'} q_j$ take $L_j(X) = X^{q_j}$ and $L_{n'}(X) = X^{q_{n'}} 1$
- Remark : NIST P-224 curve satisfies

$$p-1=2^{96}\cdot N'$$

Christophe Petit - PKC2016 - Prime ECDLP

Finding good maps : isogeny Kernels

- Find an **auxiliary curve** E' with $\#E'(\mathbb{F}_p) = S \cdot N'$ and $S = \prod_{j=1}^{n'} q_j \approx p^{1/m}$ smooth
- Let G be a subgroup of $E'(\mathbb{F}_p)$ with order S

Finding good maps : isogeny Kernels

- Find an **auxiliary curve** E' with $\#E'(\mathbb{F}_p) = S \cdot N'$ and $S = \prod_{j=1}^{n'} q_j \approx p^{1/m}$ smooth
- Let G be a subgroup of $E'(\mathbb{F}_p)$ with order S

Finding good maps : isogeny Kernels

- Find an **auxiliary curve** E' with $\#E'(\mathbb{F}_p) = S \cdot N'$ and $S = \prod_{j=1}^{n'} q_j \approx p^{1/m}$ smooth
- Let G be a subgroup of $E'(\mathbb{F}_p)$ with order S
- ► Compute isogenies \(\varphi_j\) such that \(\varphi = \varphi_{n'} \circ \ldots \circ \varphi_1\) has kernel \(G\)
- ► Take L_j the x-coordinate part of φ_j, except for L_{n'} taken in a slightly different way

Finding a smooth order curve

- Method 1 : pick random curves
- Method 2 : use complex multiplication

Finding a smooth order curve

- Method 1 : pick random curves
- Method 2 : use complex multiplication
- Method 1 needs at most $pprox |\mathcal{F}|$ trials on average
- Method 2 more efficient when you can chose p yourself (kind of trapdoor)

Solving the system

• Relation search : solve the polynomial system

$$\begin{cases} S_{m+1}(x_{11}, \dots, x_{m1}, X) = 0\\ x_{i,j+1} = L_j(x_{i,j}) & i = 1, \dots, m; j = 1, \dots, n' - 1\\ 0 = L_{n'}(x_{i,n'}) & i = 1, \dots, m. \end{cases}$$

Solving the system

► Relation search : solve the polynomial system

$$\begin{cases} S_{m+1}(x_{11}, \dots, x_{m1}, X) = 0\\ x_{i,j+1} = L_j(x_{i,j}) & i = 1, \dots, m; j = 1, \dots, n' - 1\\ 0 = L_{n'}(x_{i,n'}) & i = 1, \dots, m. \end{cases}$$

- Low degree equations, block triangular structure
- mn' variables and mn' + 1 equations
- Seems reasonable to expect dedicated algorithms, but here we start with Groebner basis algorithms

Groebner Basis Experiments

- Studied comparable size systems in binary and prime cases
- Measured average values of degree of regularity
- Compared with semi-generic systems

Christophe Petit - PKC2016 - Prime ECDLP

Solving the system : complexity?

- Algorithm only practical for small parameters
- Generic bounds for solving polynomial systems suggest exponential-time ECDLP algorithm

Solving the system : complexity?

- Algorithm only practical for small parameters
- Generic bounds for solving polynomial systems suggest exponential-time ECDLP algorithm
- Experiments using Groebner basis suggest systems easier than random systems of same size
- Sparse, block-triangular structure, and resemblance to the (polynomial time solvable) root-finding problem suggest to build dedicated algorithms to solve the systems

Solving the system : complexity?

- Algorithm only practical for small parameters
- Generic bounds for solving polynomial systems suggest exponential-time ECDLP algorithm
- Experiments using Groebner basis suggest systems easier than random systems of same size
- Sparse, block-triangular structure, and resemblance to the (polynomial time solvable) root-finding problem suggest to build dedicated algorithms to solve the systems
- Open problem !

Conclusion

- Suggested an approach to generalize previous ECDLP algorithms to elliptic curves over prime fields
- Like previous ones, algorithm only practical for very small parameters (Pollard's rho definitely better for crypto sizes)
- Open problems : asymptotic complexity, dedicated polynomial system solving methods

