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RSA 

Public key: 𝑁, 𝑒  

Secret key: (𝑝, 𝑞, 𝑑) 

Key generation: 𝑁 = 𝑝𝑞 and 
𝑒𝑑 = 1 mod (𝑝 − 1)(𝑞 − 1) 

 

One of the most famous cryptosystems 

 A number of paper study the security.  
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Known Attacks on RSA 

• Small secret exponent attack: [BD00] 
Small secret exponent 

𝑑 < 𝑁0.292 

    disclose the factorization of 𝑁.  

• Partial key exposure attacks: [EJMW05], [TK14] 
The most/least significant bits of 𝑑 disclose the 
factorization of 𝑁.  

 These attacks are based on Coppersmith’s method.  
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Variants of RSA 

RSA Takagi RSA Prime Power RSA 

PK 𝑁, 𝑒  𝑁, 𝑒  𝑁, 𝑒  

SK (𝑝, 𝑞, 𝑑) (𝑝, 𝑞, 𝑑) (𝑝, 𝑞, 𝑑) 

KG 𝑁 = 𝑝𝑞 𝑁 = 𝑝𝑟𝑞 𝑁 = 𝑝𝑟𝑞 

𝑒𝑑 = 1  
mod  

(𝑝 − 1)(𝑞 − 1) 
 

𝑒𝑑 = 1  
mod  

(𝑝 − 1)(𝑞 − 1) 

𝑒𝑑 = 1  
mod  

𝑝𝑟−1(𝑝 − 1)(𝑞 − 1) 

 The variants enable faster decryption using CRT.  
 When 𝑟 = 1, both variants are the same as RSA.  
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Known Attacks on the Variants 

RSA Takagi’s RSA Prime Power RSA 

Small 
Secret  

Exponent 

[BD00] [IKK08] [May04], [LZPL15], 
[Sar15] 

Partial 
Key 

Exposure 

[EJMW05], 
[TK14] 

[HHX+14] [May04], [LZPL15], 
[Sar15], [EKU15] 

 When 𝑟 = 1, only [IKK08] achieves the same bound as  
the best attacks on RSA.  
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Open Questions 

• Are there better attacks on the variants that generalize the 
best attacks on RSA?  

• [IKK08]’s algorithm construction is very technical and hard 
to follow.  
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Open Questions 

• Are there better attacks on the variants that generalize the 
best attacks on RSA?  

• [IKK08]’s algorithm construction is very technical and hard 
to follow.  

 

 

Are there easy-to-understand generic transformations that 
convert the attacks on RSA to Takagi’s RSA and the prime 
power RSA? 
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Our Results 

We propose transformations for both the Takagi’s RSA 
and the prime power RSA which are very simple and 
give improved results.  

– Simpler analyses of [IKK08], [Sar15] 

– Better bounds than [HHX+14], [Sar15], [EKU15] 

– Some evidence of optimality 
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PKE attacks on Takagi’s RSA (𝑟 = 2) 

 

[HHX+14] 

Our Improvements 
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PKE attacks on Takagi’s RSA (𝑟 = 2) 
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PKE attacks on the prime power RSA 
(𝑟 = 2) 
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Coppersmith’s Method 

10 /19 



Overview [How97] 

To find small roots of a bivariate modular equation 

ℎ 𝑥, 𝑦 = 0 mod 𝑒 
where 𝑥 < 𝑋 and 𝑦 < Y,  
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To find small roots of a bivariate modular equation 

ℎ 𝑥, 𝑦 = 0 mod 𝑒 
where 𝑥 < 𝑋 and 𝑦 < Y,  

• Generate ℎ1 𝑥, 𝑦 , … , ℎ𝑛(𝑥, 𝑦) that have the roots 
(𝑥 , 𝑦 ) modulo 𝑒𝑚.  

• If integer linear combinations of ℎ1 𝑥, 𝑦 , … , ℎ𝑛(𝑥, 𝑦)  
become ℎ1

′ 𝑥, 𝑦  and ℎ2
′ (𝑥, 𝑦) satisfying 

ℎ𝑖′(𝑥𝑋, 𝑦𝑌) < 𝑒𝑚, 
the original roots can be recovered.  
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LLL Reduction to Find the Polynomials 

• Polynomials ℎ1
′ 𝑥, 𝑦  and ℎ2

′ (𝑥, 𝑦) that are the integer 
linear combinations of ℎ1 𝑥, 𝑦 , … , ℎ𝑛(𝑥, 𝑦) and the norms 
of ℎ𝑖′(𝑥𝑋, 𝑦𝑌)  are small.  
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linear combinations of ℎ1 𝑥, 𝑦 , … , ℎ𝑛(𝑥, 𝑦) and the norms 
of ℎ𝑖′(𝑥𝑋, 𝑦𝑌)  are small.  

 

• LLL algorithm can efficiently find short lattice vectors 𝑏1′ 

and 𝑏2′ that are the integer linear combinations of 𝑏1, …, 

𝑏𝑛 and the Euclidean norms are small.  

 Build a lattice whose basis consists of coefficients of 
ℎ1 𝑥𝑋, 𝑦𝑌 ,… , ℎ𝑛(𝑥𝑋, 𝑦𝑌) and apply the LLL.  

12 /19 



SSE Attack on RSA [BD00] 

𝑁 = 𝑝𝑞   and   𝑒𝑑 = 1   mod (𝑝 − 1)(𝑞 − 1) 
𝑓 𝑥, 𝑦 = 1 + 𝑥 𝑁 + 1 + 𝑦    mod 𝑒 

whose root (ℓ, − 𝑝 + 𝑞 ) discloses the factorization of 𝑁. 

 

• A bivariate equation with three monomials (1, 𝑥, 𝑥𝑦)  
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How to Generalize the Attacks 
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SSE Attack on Takagi’s RSA 

𝑁 = 𝑝𝑟𝑞   and   𝑒𝑑 = 1   mod (𝑝 − 1)(𝑞 − 1) 
𝑓 𝑥, 𝑦1, 𝑦2 = 1 + 𝑥 𝑦1 − 1 (𝑦2 − 1)   mod 𝑒 

whose root (ℓ, 𝑝, 𝑞) discloses the factorization of 𝑁.  

 

• A trivariate equation with five monomials 
(1, 𝑥, 𝑥𝑦1, 𝑥𝑦2, 𝑥𝑦1𝑦2) 

• Nontrivial algebraic relation 𝑦1
𝑟𝑦2 = 𝑁 
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whose root (ℓ, 𝑝, 𝑞) discloses the factorization of 𝑁.  

Polynomials  

1, 𝑦2, 𝑦1𝑦2, … , 𝑦1
𝑟−1𝑦2 ⋅ 𝑥𝑖𝑦1

𝑗
𝑓𝑢 𝑥, 𝑦1, 𝑦2 𝑒𝑚−𝑢 

generate a triangular matrix with (sizes of ) diagonals 

𝑌0, 𝑌1, … , 𝑌𝑟 ⋅ 𝑋𝑖+𝑢𝑌𝑗+𝑢𝑒𝑚−𝑢. 
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SSE Attack on the prime power RSA 

𝑁 = 𝑝𝑟𝑞   and   𝑒𝑑 = 1   mod (𝑝 − 1)(𝑞 − 1) 
𝑓 𝑥, 𝑦1, 𝑦2 = 1 + 𝑥𝑦1

𝑟−1 𝑦1 − 1 (𝑦2 − 1)  mod 𝑒 

whose roots (ℓ, 𝑝, 𝑞) offer the factorization of 𝑁.  

 

• A trivariate equation with five monomials 
(1, 𝑥, 𝑥𝑦1

𝑟−1, 𝑥𝑦1
𝑟 , 𝑥𝑦1

𝑟−1𝑦2) 

• Nontrivial algebraic relation 𝑦1
𝑟𝑦2 = 𝑁 
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SSE Attack on the prime power RSA 

𝑁 = 𝑝𝑟𝑞   and   𝑒𝑑 = 1   mod (𝑝 − 1)(𝑞 − 1) 
𝑓 𝑥, 𝑦1, 𝑦2 = 1 + 𝑥𝑦1

𝑟−1 𝑦1 − 1 (𝑦2 − 1)  mod 𝑒 

whose roots (ℓ, 𝑝, 𝑞) offer the factorization of 𝑁.  

Polynomials  

𝑦2
𝑎, 𝑦1𝑦2

𝑎, … , 𝑦1
𝑟−1𝑦2

𝑎, 𝑦1
𝑟−1𝑦2

𝑎+1

⋅ 𝑥𝑖𝑦1
𝑗
𝑓𝑢 𝑥, 𝑦1, 𝑦2 𝑒𝑚−𝑢 

generate a triangular matrix with (sizes of ) diagonals 

𝑌𝑎, 𝑌𝑎+1, … , 𝑌𝑎+𝑟 ⋅ 𝑋𝑖+𝑢𝑌𝑗+𝑢𝑒𝑚−𝑢. 
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Our Transformations 

SSE on RSA PKE on RSA 

1, 𝑦2, 𝑦1𝑦2, … , 𝑦1
𝑟−1𝑦2  

SSE on Takagi RSA PKE on Takagi RSA 
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Our Transformations 

SSE on RSA PKE on RSA 

𝑦2
𝑎 , 𝑦1𝑦2

𝑎 , … , 𝑦1
𝑟−1𝑦2

𝑎 , 𝑦1
𝑟−1𝑦2

𝑎+1  

SSE on  
prime power RSA 

PKE on  
prime power RSA 
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Conclusion 

• We propose generic transformations that convert lattices 
on RSA to those on the Takagi RSA and the prime power 
RSA.  
As applications, we propose small secret exponent attacks 
and partial key exposure attacks on the variants.  

 Further applications of our transformations? 

 Better attacks can be obtained from other frameworks? 
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